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Investigation of the use of erasures in a concatenated

coding scheme
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Philip J. Marriott

Submitted in partial fulfillment of the requirements for the Master of Science degree in

Electrical Engineering

University of Toledo

June 1997

A new method for declaring erasures in a concatenated coding scheme is

investigated. This method is used with the rate 1/2 K = 7 convolutional code and the

(255, 223) Reed Solomon code. Errors and erasures Reed Solomon decoding is used.

The erasure method proposed use a soft output Viterbi algorithm and information

provided by decoded Reed Solomon codewords in a deinterleaving frame. The results

show that a gain of 0.3 dB is possible using a minimum amount of decoding trials.
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Chapter 1

Introduction

Concatenated coding systems are often used for forward error correction to obtain

large coding gains when transmitting information over unreliable channels. One of the

most popular concatenated coding systems is illustrated in Figure 1.1. This concatenated

system uses a convolutional code with Viterbi decoding for the inner code, and a Reed

Solomon code as the outer code. This is effective for a number of reasons.

Convolutional codes provide sufficient random error correction, but tend to generate burst

errors for low signal to noise ratio at the decoder output. Reed Solomon (RS) codes have

significant burst error correcting capacity, but do not handle random errors very well. In

this concatenated system, the inner convolutional code is used to correct the random

errors, and although the Viterbi decoder will produce short burst errors at its output, the

outer Reed Solomon code will be able to correct these bursts. The effects of these burst

errors can further be reduced by using an interleaver between the inner and outer

decoders. In addition, the Viterbi decoder can further improve the performance by

accepting soft decisions from the receiver.

The use of erasures is one way to increase the performance of Reed Solomon

codes. Erasure decoding can be thought of as the simplest form of soft decision. An

erasure indicates the reception of a signal whose corresponding symbol value is in doubt.



In somecasesit is better to erasethe symbol than to force a decision that may be

incorrect. Erasing a position gives information to the decoderas to the location of a

possibleerror. A block code with minimum distancedm_° cancorrect v errorsand 9

erasures as long as the inequality 2. v + p _< dmi n is satisfied. Therefore, it is possible

for a t-error correcting RS code to correct more than t errors if errors are transformed into

erasures.

IInformation___ ReedSolomon _ ___ ConvolutionalSource Encoder Interleaver Encoder

Channel

IDestinati°n _-_ ReedS°_°m°n _ Deinterleaver_--_. Decoder DecoderViterbi ___

Figure 1.1 A concaienated coding system using inner ¢olavolutional code with Viterbi

decoding and an outer Reed Solomon code

In the concatenated system in Figure 1.1, the Viterbi decoder produces hard

outputs for input to the Reed Solomon decoder. The full capability of the concatenated

system is not fully realized because no reliability information is exchanged between the

inner and outer decoders. If the Viterbi decoder could be modified to generate reliability

information about its output, this information could be used to declare erasures at the

input to the Reed Solomon decoder, thus improving the performance. One method that

2



can be used to accomplish this is the Soft Output Viterbi Algorithm (SOVA). The

method proposed by Hagenauer and Hoeher [4] uses information provided by the path

metrics in the Viterbi decoder to determine a reliability value associated with each

outgoing bit.

One application where this gain could be potentially useful is in NASA deep

space missions. The transmission of data over large distances, combined with limited

transmission power, results in low signal to noise ratio at the receiving end. This,

coupled with the fact that the data being transmitted is in the form of compressed images

where the required probability of error is 10 .5 , leads to the need for a powerful coding

system [16]. The NASA standard for deep space communications is the (255, 223) 16

error correcting RS code as the outer code, and the rate 1/2 convolutional code with

constraint length K = 7. Interleaver depths of I = 2 to 8 have been used. The use of a

SOVA and an errors and erasures RS decoder can provide additional gains with no need

to modify the transmitting end. This enables erasure decoding to be used in existing

missions. This is particularly helpful for missions where unforeseen problems occur.

The Galelaio mission where the main antenna failed is one such instance. Every tenth of

a decibel gain that can be obtained in this instance is extremely helpful [15].

One method used to improve the NASA standard for deep space communications

through the use of erasures has been investigated by Paaske [7]. This method uses the

deinterleaver to provide information concerning the probable locations of errors in non-

decoded Reed Solomon codewords in an interleaving frame. In an deinterleaving flame

there are I Reed Solomon codewords, where I is the interleaving depth, ff after



attempting to decode the frame, some of the RS codewords fail to decode, redecoding is

used. Erasures are declared using information provided by the error positions in the

successfully decoded RS codewords. Because the Viterbi decoder produces burst of

errors at it's output, and the data is fed into the deinterleaver by row and output by

column to the Reed Solomon decoder, the bursts occur at the same symbols in

neighboring Reed Solomon words in the deinterleaver frame. If some but not all of the

Reed Solomon words in the deinterleaving frame have been successfully decoded, the

positions of the errors in the decoded words are known. The knowledge of the error

positions can be used to declare erasures in the same positions in neighboring, yet to be

decoded Reed Solomon codewords.

1.1 Proposed research

The purpose of this report is to investigate the performance of the use of a Soft

Output Viterbi Algorithm used in a concatenated coding scheme with an errors and

erasures RS decoder. The reliability information provided by the SOVA will be

converted into Reed Solomon symbol erasures for the RS decoder. A table of least

reliable symbols will be compiled for each RS codeword, and systematically erased. In

addition, another method loosely based upon Paaske's method will be investigated. This

method combines the SOVA output with a deinterleaver. The table of least reliable

symbols •can be modified using additional information provided by the deinterleaver. If

after the first decoding of a deinterleaving frame, there are less than I successful decoding

of RS codewords, redecoding is attempted. It turns out that not only does the SOVA



outputproducebursterrors,but thereliabilitiesfor theseerror symbolsareidentical. This

informationis usedto modify thetableof smallestreliabilities. Theperformanceof these

codeswill be obtainedthroughtheuseof a computersimulationwritten in C computer

language. The convolutional code developedfor use in this simulation is capableof

handling any code rate and constraintlength. The Reed Solomoncode, likewise, can

handle any symbol size and numberof symbol errorscorrected. The ReedSolomon

• decoderis anerrorsanderasuresdecoder. Althoughthe codesdevelopedarecapableof

handling any size code, the NASA standardcoding systemwill be investigatedwith

various interleavingdepths. The simulationwill be performedover a AWGN channel

usingBPSK modulationandRaisedCosineFIR filters. Thecodingsystemswill alsobe

simulatedoveranidealBPSKchannel.

Thestructureof this reportis asfollows. Chapter2 containsall of thebackground

information. Chapter3 will containthe detailsof thecomputersimulation. Chapter4

will containthe strategyfor declaringRSsymbolerasuresfrom thereliability information

generatedby the SOVA, andthestrategyfor usingtheSOVA with thedeinterleaverfor

redecoding. Chapter4 will alsopresentthe resultsof the simulationfor both methods

investigated.Chapter5 will containconclusions,andideasfor possiblefuture research.

Thesimulationflow chartsarefoundin AppendixA andtheC languagesourcecodeused

tOperform thesimulationscanbefoundin AppendixB.
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Chapter 2

Background

Before discussing the two methods for erasure declaration presented in this report,

it is helpful to become familiar with some of the basic concepts of error control codes.

This chapter will contain all of the background necessary to understand the various

elements used in the concatenated system. Encoding and decoding of Reed Solomon and

convolutional codes will be reviewed. In addition, the method used for errors and

erasures decoding in the Reed Solomon decoder will be discussed, as well as the method

used for generating the soft outputs in the Viterbi decoder. Block interleaving will be

briefly discussed, in addition to the redecoding method proposed by Paaske.

2.1 Reed Solomon codes

Bose-Chadhuri-Hocquenghem (BCH) codes are a powerful class of cyclic codes

which outperform all other block codes with the same block length and code length [9].

These codes are a generalization of Hamming codes to allow multiple error correction.

Reed Solomon (RS) codes are special subclass of BCH codes which utilize non-binary

symbols. The non-binary symbols used in RS codes are formed using finite field

arithmetic. Finite fields are sometimes called Galois fields and are denoted by GF(p),

where p is the number of elements in the field, and is a prime number.



2.1.1 Galois fields

A field is a set of elements in which we can do addition, subtraction,

multiplication, and division without leaving the set. Subtraction and division are defined

by the additive inverse and the multiplicative inverse. Addition and multiplication must

also satisfy the commutative, associative, and distributive laws. A field with a finite

number of elements is called a finite field. For example, GF(7) = {0, 1, 2, 3, 4, 5, 6} is a

field under modulo 7 addition and multiplication.

symbols from the field GF(2m), where GF(2 m)

Reed Solomon codes are codes with

= {0,1,_,o_ 2 ..... (_2m-2}. The field

GF(2 m) is an extension of the ground field GF(2), and the elements in this field can be

represented by an ordered sequence of m components, (a0, a_, a z ..... am. l), or an m-

tuple. Each of the components are from the ground field GF(2). The 2 m elements of the

field GF(2 m) are defined by an irreducible polynomial, or a primitive polynomial P(x).

Each element will satisfy the condition P(cz) = 0. The primitive polynomials that define

the elements for m = 3 to 9 are as in Table 2.1. For example, the elements in GF(2 3) are

defined using the primitive polynomial 1 + x + x 3 . The elements either are the zero

element '0', the identity element ' 1', or some power of the base element or. The element

o_3 is derived from the primitive polynomial and the relationship P(cz) = 0.

P(00= o_3 + _ + 1 =0

or ot 3 =c_+ 1.

All other elements are simply generated by multiplication by or. The table repeats after

o_m-2 (i.e. o_6 • o_ = 1 , o_6 •o_2 = o: etc.). The elements for GF(23 ) are as follows.



0 = 0

1 = 1

(2 = 1"_ = (2

(22 = (2.(2 = (22

(X 3 = 1+(2

(24 = (2.(23 = (2"((2+1)= (2+(22

(25 = (2.(24= (2.((2+(22)= 1+(2+(22

(26 = (2.(25= (2.(1+(2+052) = 1+(22

Table 2.1: List of primitive polynomials for m = 3 to 9

m P(X)

3 1 +X+X 3

4 1 +X +X 4

5 1 + x 2 + x 5

• 6 1 +X+X 6

7 1 + x 3 + x 7

8 l+x 2 ..i,- X 3 ..{-X 4 ,.[.- X 8

9 l+x 4 -I-X 9

It is useful to represent these elements in a number of ways. The polynomial

(2m-Irepresentation is given by a 0 + a_(2 + a2(2 2 + ... + am. 1 and the m-tuple



)

representation is given by (a o, a l, a 2..... am.l).

representations for GF(8) are given in Table 2.2.

The elements

Table 2.2 Three representations for the elements of GF(8)
3

generated by 1 + X + x

Power Polynomial 3-tuple

Representation Representation Representation

0 0 (0 0 0)

1 1 (1 oo)

a c_ (0 1 0)

_: ot2 (0 0 1)

_3 1 + _ (1 10)

_4 a + _2 (0 1 1)

_5 1 -I- (_ "t" 0_ 2 (1 1 1)

(_6 1 + o_2 (1 0 1)

and the various

Multiplication and addition follow the rules of finite field algebra. Multiplication

of two elements is accomplished by adding the powers of the two elements modulo 2 m_1.

For example, in GF(8), (x4 .0_ 5 = a(4+5)mod7 = 0_2. For addition of two elements in a

field, it is useful to use the m-tuple representation of an element. Consider a =

(a o, a_, a 2..... am.l) andb = (b,,, b_, b2 ..... bin,)" The addition of a and b is simply

the addition of each component

namely(a o + bo,a t + b_, a 2 + b 2 ..... am. l

m-tuple is from GF(2), binary addition is used.

in the m-tuple representation,

+ bm. 1 ). Because each component of the



2.1.2 Generating Reed Solomon codes

A t-error correcting Reed Solomon code with symbols from GF(2 m) has the

following parameters:

Block Length n = 2 m - 1

Number of information symbols k = n - 2t

Minimum Distance dmi n = 2t + 1

The generator polynomial of a t-error correcting Reed Solomon code is:

g(x) = (x + or). (x + cx 2 )'" "(X + O_2t )

where g(x) has all of its roots and coefficients from GF(2m). The code generated from

g(x) is a (n, n - 2t) cyclic code. The code words are generated by:

_=_.G

Where G is the generator matrix in systematic form. Let us design a t - 2 error correcting

Reed Solomon code using symbols from GF(2 3) - GF(8). We know that:

Block length n = 2 3- 1 n = 7

Information symbols k = n - 2t k = 3

The generator polynomial for this (7, 3) Reed Solomon code is given by:

g(x) = (x + or)(x + c_, 2 ). (x --_ 0(, 3 ). (x + 0_, 4 )

or

g(x)= _3 +cz.x + x 2 +cz 3 .x 3 -[-X 4

= [ 0_30_ 1 o_3 1]

10



Thegeneratormatrix in non-systematicform is:

G(X) = 0 o_3 c_ 1 o_3 1

0 0 o_3 _ 1 ot3

To get the matrix into systematicform, we mustconvert the last threecolumnsinto an

identity matrix. This is accomplishedby rowoperations.Theresultafterdoingsois:

G(X) = O_6 O_6 1 _2 0 1

(Z 5 O_4 1 _4 0 0

The information bits to be transmitted are u = [ 010 011 110 ]. From Table 2.2 we

know that these bits correspond to the symbols u = [c_ o_5 c_3 ] in GF(8). Using

c = g.CJ, we obtain the code vector

= . _6 0_6 _2c [or o_5 o_3 ] 1 0 1

0_5 _4 10_ 4 0 0

C "- [ I_ I_ 3 0_ 4 1_4 1_ 1_5 1_3 ]

or

C=[010 110 011 011 010 011 110]

_i. ¸" .

i/•

The encoding of Reed Solomon codes can be also accomplished using a shift

register circuit. For a t-error correcting RS code, the generator polynomial is given by:

g(x) = (x + _). (x + _2 ).. "(X + O_2t )

11



=go + glx + g2 x2 + ... + g2t.i x2t-I + X 2t

'%/,

where g(x) has all of its roots and has coefficients from GF(2m). The generator

polynomial g(x) has been chosen so that it and codewords generated by it have zeros for

2. t consecutive powers of o_

g(c_ j) = 0 forj= 1,2 .... 2.t

The code generated from g(x) is a (n, n - 2t) cyclic code. The encoding of a non-binary

cyclic code is similar to the encoding of a binary cyclic code. Let

H(X)=U 0 "_- nix "[" U2 X2 "l- "'" "1"- U2t.l x2t-I

be the message to be encoded. In systematic form, the 2t parity check symbols are the

coefficients of the remainder b(x)=b 0 + blX 4" b2 x2 4- .-. 4- b2t.1 x2t-I which is

obtained by dividing the message polynomial u(x) by the generator polynomial g(x). In

hardware, this is accomplished by using the shift register circuit of Figure 2.1. The

encoder circuit works as follows. The k information symbols are first loaded into the

circuit. At the same time, the k information symbols are transferred directly to the output.

r

Message X 2t" U(X)

_..,_/ Code Word

Parity Check Digits

Figure 2.1 Encoding circuit for t error correcting RS code

12



Whenall of the informationsymbolshavebeenreadin, the2t parity symbolsarepresent

in the 2t registersdenotedb0, b_..... bzt. ] , and are then transferred to the output, thus

completing the systematic code word. This process can best be illustrated with an

example. Consider the t = 2 error correcting (7, 3) Reed Solomon code. The generator

polynomial is

g(x) = (x + c_). (x + _2 ). (x + 0_3) • (x + (_4)

= (_3 ..{._(_. X -{'- X 2 -1-(_3 . X 3 _{_ X 4

and it's corresponding encoding circuit is given in Figure 2.2. The encoding of the

information symbols u = [c_ _5 o_3 ] is given in Table 2.3. The information symbols

'I

r

Message

_O r

r r

X 2t "U(X)

)

Parity Check Digits

Figure 2.2 Encoding circuit for t = 2 error correcting (7, 3) RS code

are fed directly to the output to the encoding circuit. At t = 1, the first information

symbol is fed into the encoding circuit, and the register contents are modified.

Information symbols are fed into the encoder until t = 3. At this time, the 4 parity

symbols are present in the registers b 0, b l, b 2, b3, and are sent to the output of the

13



The encoded vector is equal to

_4 _ _5 _3].

c = [b o b I b 2 b 3 U 2 UI UO] or

Table 2.3 Shift register contents for the encoding of u = [ (z o_5 o_3 ]

; (. ( i

t

0

Input Symbols Gate

U 0 = O_3 0(, 3

bo bl b 2 b 3

0 0 0 0

_6 _4 _3 _6

2.1.3 Decoding of Reed Solomon Codes

Let r(x) = r0 + q x + ... + r.._x n-I be a received polynomial which is equal to

a codeword c(x) = C O "1" ClX de.....1_ Cn.l xn-I corrupted by an error pattern

n-I
e(x) = e o + e_x + ... + en.lX .

r(x) = c(x) + e(x)

The syndrome of the received polynomial is obtained by evaluating r(x) at the 2. t zeros.

Sj = r(&) = c(_ j) + e(&) j=l,2 ..... 2.t

Any codeword c(x) will have zeros for these 2. t powers of a, and thus, have a syndrome

equal to zero. Therefore, the syqdrome of the received word is equivalent to the syndrome

of the error pattern.

14



n-I

Sj = r((zJ): e((z j) -- £ e k "(o{,J) k j= 1,2 ..... 2.t (2.1)

k=0

If there are v errors in positions i j, i 2 ..... i v , (2.1) can be expressed as

Sj = _ eij(_J) il

1= l (2.2)

= eq(X q + ei20{, j2 + ... + eiv(X _v j = 1,2 ..... 2.t

To reduce the notational complexity of (2.2), the error locations will be defined as

X_ = cz '_ , and the error magnitudes as Y_ = e_, where 1 = 1, 2 ..... v. (2.2) then becomes

S 1 = YIXl + Y2X2 + ... + YvXv

S 2 = YIX12 + YzX2 2 + ... + YvXv 2

3
S 3 = Y1X1 + YzX2 3 + ... + YvXv 3

2t 2t
Szt -- Y1Xl + YzX2 + ... + YvXv 2t

(2.3)

The error locator polynomial A(x) is defined as

A(x) = (1 - xX,)(1 - xX2)... (1 - xXv)

= 1 + A_x + A2 x2 + ... + Av._X v-_ + Av xv
(2.4)

where the roots of A(x) are the error locations X_, X 2 ..... X v . The coefficients of the

error location polynomial A_ 1 = 0, 1..... v are related to the error locations by the

following equations

Ao=l

A_ = X_ + X 2 + ... + Xv._ + Xv

A 2 = XlX 2 + XIX 3 + ... + X__2X _ + X_.IX _

A 3 = XIX2X 3 + XIX2X 4 + ... + X_.3Xv.IX v + Xv.2X__IX _
(2.5)

A v = XlX2X 3 ... Xv_lX v

15
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i

(2.3) and (2.5) are related by Newton's identities [11]

S 2

S 3 + A1S 2 + A2S 1

S v + A1Sv_ 1 + AzSv_ 2 + ...

S 1 + A 1 = 0

+ AIS 1 + 2A 2 = 0

+ 3A 3 = 0

+ Av.lS 1 + vA v = 0
(2.6)

Sv+l + A1Sv + A2Sv_ 1 + ... + AvS l = 0

S2t + A1S2t_I + A2S2t_ 2 + ... + AvS2t_ v = 0

(2.6) can be solved directly to obtain the coefficients of the error locator polynomial, but

such methods require a number of computations proportional to t 3 [2]. This makes a

direct solution of (2.6) not practical, especially for RS codes that need to correct a large

amount of errors. Berlekamp's algorith_ is much more computationally efficient method

of correcting RS codes• The complexity increases linearly with t, so codes correcting

large numbers of errors can be implemented [11]. Berlekamp's algorithm first finds a

minimum degree polynomial A(*_(x) whose coefficients satisfy Newton's first identity.

This polynomial is tested whether the second Newton identity is also satisfied. If it does,

then A(2)(x) = A(_(x). If not, then a correction term, or discrepancy is added to A(l)(x)

to form A(2_(x) such that A(2_(x) satisfies the first two Newton's identities. Next

A(2)(x) is tested whether it satisfies the third Newton's identity, etc. This process

continues until A (2'_(x) is obtained. Then A(x) = A (2'_(x). If there are less than t errors,

A(x) produces the error pattern.

16



Massey's shift register based interpretation of Berlekamp's algorithm is known as

the Berlekamp-Massey algorithm [2, 11]. The Newton's Identities in (2.6) can be

expressed in an alternate form

i-

:i /"

V

Sj = ZAiSj.i j = v+l, v+2 ..... 2v. (2.7)
i=l

Massey [17] recognized that (2.7) can be represented physically using a linear feedback

shift register (LFSR) as shown in Figure 2.3.

-Av-l"" _ ) -Av-2-'-_ _Av_3_..)Q

) ,(

) -A1---X

Figure 2.3 LFSR interpretation of (2.7)

The output of the LFSR will be the 2t syndromes S 1, S 2 ..... S2t, and the register taps

are the coefficients of the error correction polynomial A(x). The LFSR can be designed

to generate the known sequence of syndromes such that A(x) is of the smallest degree.

The procedure for finding the taps of the LFSR is similar to Berlekamp's algorithm. First

a connection polynomial T(x) = 1 + mix + ...

whose coefficients are the taps of a length L LFSR.

+ AL.lXL-I+ AL xL is formed

The Berlekamp-Massey algorithm

first finds T(x) of length L = 1 such that the first output of the LFSR is the first syndrome

17
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S l . The second output of the LFSR is compared to the second syndrome, and if the two

are not equal then the connection polynomial is modified using a discrepancy term. If the

two are equal the taps remain the same. The third output of the LFSR is compared to the

third syndrome, and if they are not equal, the taps of the connection polynomial are

modified. This process continues for 2t iterations. At the end of the 2t iterations, the taps

of the LFSR specify the coefficients of the error correction polynomial A(x). The details

of the algorithm are presented below.

2.1.3.1 Berlekamp-Massey Algorithm [2]

1. Compute the syndrome of the received codeword Sj = r(od) .

. Initialize the following variables

Error locator polynomial A(x) = 1

Index r = 0

8•

.

Temporary storage B(x) = 1

Shift register length L = 0

Setr=r+ 1.

. Compute the r th discrepancy, which is the error in the next syndrome

L

m r = 2AjSr_j

j=0

5. If A r = 0, setB(x) = x.B(x) and go to step 11.

6. Compute the new connection polynomial

T(x) = A(x) - A r .x.B(x)

18



7. If 2-L > r - 1,setB(x)= x.B(x) andgoto step10.

8. Storeold shift registerafternormalizing

B(x) = Ar-'A(x )

9. Updateshift registerlength L = r - L.

10. Updatetheshift register

A(x) = T(x)

11. If r< 2.t,gotostep3.

12. If deg A(x) _: L, there are more than t errors. Stop.

13. Determine the roots of A(x). The inverses of these roots are the error locations

Xl, X2 ..... X v •

14. Determine the corresponding error values YI, Y2 ..... Yr.

The simplest method to find the roots of A(x) in step 13 is by using a process

known as a Chien Search. This is a trial and error approach which computes A(c_ j) for j

= 0, 1, .. 2 m-2. If A(0_ j) = 0, then o_j is a root of A(x). The error magnitudes can be

calculated by using the Forney algorithm[3, 1 I]. First, compute a syndrome polynomial

S(x) from the 2. t syndromes.

2.t

S(x) = 1 + _[]Sjx j (2.7)
j=l

The error evaluator polynomial f_(x) can be computed by the product of the syndrome

polynomial S(x) and the error locator polynomial A(x).

g_(x) = S(x). A(x) mod x 2'+] (2.8)
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Next, compute the derivative Of the error locator polynomial A'(x).

A'(x) = £XiI"[(1 - xXj) (2.9)
i=l j_i

The error magnitudes Y_, Y2 ..... Yv can then be calculated using the Forney Algorithm.

f

X 1 -I _"_(X 1-1 )

YI = 1 = 1, 2 ..... v (2.10)
-1

A'(XI )

For example, let r(x) - c_ + 1_2x + _4x2 + o_4x 3 + (_6x4 + (_5x5 + o_3x 6 be a

code word corrupted by an error pattern e(x). The first step in decoding is to compute the

syndrome of the received polynomial.

S_ = r(a) = a + t_2t_ + 0_4('_2 dr" (_4(_3 "-I- (_60_4 -[- 0_50_5 -I- 0_3(_6

$1=1

S 2 -- r(_ 2) -" (X + (X2tX z + (_40_4 -st- (_4(_6 d- 0_,6C_,8 dt - 0_50_ 10 -1-- (_3(_12

S 2 = O_ 2

S 3 - r(_ 3) "- _ + 0_2_ 3 + 1_40_ 6 4" C/_4_9 "t - 13_,61_12 "Jr" 1_51_15 -I- C_31_18

83----1

S 4 -- r((X 4) = (X + 0_20_ 4 -_- (_41_8 dr- (_4(_,12 q. (_60_16 dr _50_20 q_ (_30_24

S 4 : 13(, 6

The syndrome polynomial is

2.t

S(x) = 1 + y__Sjx j =
j=l

1 + x + c[,2x 2 -t- x 3 -+. o(,6x 4 . (2.11)

Next, the Berlekamp-Massey algorithm is used to find the error locator polynomial A(x).

The results of the computations for each iteration of the algorithm are given in Table 2.4.
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Table 2.4 Results of the computations for each iteration of the

Berlekamp-Massey algorithm

r A r T(x) B(x) A(x) L

0 1 1 0

1 1 l+x 1 l+x 1

2 _6 1 + (22x x 1 + (22x 1

3 c_5 1 "4- (22X "[- (25X2 (23(,2 + (24X 1 + c_2x + _5x2 2

4 0 1 "_ (ff_2X "1"- {_5X2 1_2 -'1- [_4X 1 + _2x + c_Sx2 2

The error locator polynomial is found to be A(x) = 1 + (22X "t- (25X2. The roots of

A(x) are (26 and (23, and the inverses of these roots give the error locations X_ = (2 and

X2 = (24. The error evaluator polynomial is

_2(x) = S(x)A(x) = (1 + x + (22x2 + x 3 + 0_6x4)(1 + (22x + (25x2)

= 1 + O_.6X q" (_5X2

and the derivative of the error location polynomial is A'(x) = I_, 2 . The error values can

be calculated using (2.10)

y_ = (2(1 + (26(26 -I- (25(212) .._ (2(1 + (25 + (23) = (25
(22 (22

(24(1 + (26(23 q_ (25(26) _ (24(1 + (22+ (24) = (25

Y2 = i._2 - (22
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The error polynomial is e(x) = c_Sx + o_5x 4 , and the corrected polynomial is

r(x)+e(x)=(ot + _2x + c_4x 2 + 1_4x3 -st- o_6x 4 ..{- o_5x 5 -Jr- o_3x6)..t.-((_5x --I.- (ff_5x4)

--(_ -.I.- o_3x --I.- o_4x 2 .4- o_,4x 3 -.I- o_x 4 .._ o_5x 5 q.- (_3x6

2.1.3.2 Errors and erasures RS decoder

In order to correct both errors and erasures, certain modifications to the

Berlekamp-Massey algorithm will need to be made. Suppose that a received polynomial

r(x) contains v errors in locations i 1, i 2 ..... i v and 9 erasures in locations

Jl, J2 ..... Jp- An errors and erasures Reed Solomon code can correct v errors and 9

erasures as long as 2. 9 + v < dmin where dmi n is the minimum distance of the code.

The error locations are given by X k = o__k k = 1, 2 ..... v and the erasure locations are

given by U_ = o_j_ 1 = 1, 2 ..... 9. The erased positions are known at the beginning of

the decoding operation, and are filled with zeros before the decoding begins.

2.1.3.3 Berlekamp-Massey algorithm for errors and erasures [2]

1. Substitute zeros into the erased positions in the received word.

2. Compute the syndrome of the received codeword Sj = r(o0 )

3. Initialize the following variables

Errors and erasures locator polynomial A(x) = 1

Index r = 0

Temporary Storage B(x) = 1

22



Shift registerlength L = 0

4. Setr=r+l.

5. Ifr>p go to stepl0

6. A(x) = A(x).(1 - U r • X)

7. B(x) = A(x)

8. L=L+ 1

9. Go to step 4

10. Compute the r th discrepancy, which is the error in the next syndrome

L

A r = _AjSr_ j
j=0

11. IrA = 0,setB(x)= x.B(x) and go to stepll.

12. Compute the new connection polynomial T(x) "- A(X) - A r • X" B(x)

13. If 2.L > r + P - 1, set B(x) = x.B(x) and go to step 16.

14. Store old shift register after normalizing

B(x) = Ar-lA(x)

15. Update shift register length L = r - L ÷ p.

16. Update the shift register

A(x) = T(x)

17. Ifr<2.t,gotostep4.

18. If deg A(x) _: L, 2 9 + v > d,_n • Stop.
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19. Determinetherootsof A(x). Theinversesof theserootsgivetheerrorlocations

X_, X 2..... X VandtheerasurelocationsU_, U2..... Up.

20. Computetheerrorevaluatorpolynomial

D.(x) = S(x). A(x) roodx2t+l

21. UsetheForneyAlgorithm to computetheerror values

X k _'-_(X k -1 )

Yik A'(Xk )
= -1 i=1,2 ..... v

and the erasure values

(2.13)

UI_'_(UI-1) j = 1, 2 ..... P
Nil - At(Ul-l)

(2.14)

For example, let r(x) = a + (_3X + fx 2 + _4X3 + (_6X4 -I- fx 5 + o_3x 6 be acode

word corrupted by an unknown error pattern e(x) and a erasure pattern

f(x) = f x 2 + f x 5 with known positions and unknown values denoted by 'f'. The first

step in decoding is to insert zeros into the erased positions and compute the syndrome of

the received polynomial.

S 1 = r(o_) -- _ -.1-(_31_, .,_ 1_4c_3 i" (_61_4...1_ _3_6

S t =a

S2 = r(o_2) = _ + 1ff.3(_2 + 1ff4{_6 ..i." 1_6(_8 ..l_ 1_31_12

82 ._ (_6

5 3 - r(o_ 3) - O_ + (_30_3 + 0_4(_9 -'l" 1_61_,12 -t- 1_31_18

• 83 = (_6

S 4 _-_ r(_ 4) - (X + {ff3(_4 + (_40_,12 ._t. _6(_16 1_ 0_30_24

84 -- 0
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The syndrome polynomial is

2.t

S(x) = 1 + y__gjx j = 1 + o_x + O_6X2 de O_,6X 3

j=l

Next, 'the modified Berlekamp-Massey algorithm is used to find the error locator

polynomial A(x). The contents of the variables for each iteration of the algorithm are

given in Table 2.5.

Table 2.5 Results of the computations for each iteration of the errors

and erasures Berlekamp-Massey algorithm

r zX_ T(x) B(x) A(x) L

0 - 1 1 0

1 - 1 + _x2x I + _2x 1

2 - 1 + c_3x + x 2 1 + ff3x + x 2 2

3 a¢3 1 "at" O_2X 2 de 1_3X3 O_ 4 + X de O_4X 2 1 de O_2X 2 + 1_3X3 3

4 _2 1 + O_6X "t- (_4X3 [_4X 4" X 2 de _4X3 1 de O_6X de 1_4X3 3

• i

The error locator polynomial is found to be A(x) = 1 + _6X de _4X3. The roots of

A(x) are o_2 , c_3 , and ot5 . The inverses of these roots give the error location X I = 1_4

and the erasure locations U l -- c_2 and U 2 = _5 , which were known at the beginning

of the decoding operation. The error connection polynomial is

_(x) = S(x)A(x) = (1 + aCx + O_6X2 de 1_6X3 )(1 de (_6X de 0_4X 3 )

25



= 1 -[" (_,5X + (22X2 "[- (3_2X3

and the derivative of the error location polynomial is A'(x) = c_6 + 1_4x2.

value can be calculated using (2.13)

(24(1 + (25(23 + (22(26 ._ (22X9) (24(1 --I- (2 q- (2 -4- (_4)

Y1 = = = (25
(26 .at. (24(26 (26 ,4. (23

and the erasure values by using (2.14)

(22(1 + (25(25 + (22(210 ..{_ (22X15) (22(1 + (23 '4-(25 + (23) (24Yl = = =
(26 .4. (24(210 (26 "l- l

The error

The error and erasure polynomials are e(x) = (25x3 and f(x) = (24x2 at- (25x5 and the

corrected polynomial is

r(x) +e(x)+f(x)= ((2 + (23X "F (24X3 q" (26X4 q- (25X5)

= (2 + (X3X + (24X2 + (24X3

at-(23X6)-I-((25X3)--F((24X2

+ (26X4 + (25X5 + (23X6

2.2 Block Interleaving

Interleaving is commonly used to break up correlated errors into random errors by

rearranging the symbols. This is done because most block and convolutional codes are

optimal for random errors. Interleaving causes correlated errors to be spread out over

time, and then the coding system can handle the errors as if they were random. There are

two major types of interleaving, block and convolutional. Block interleavers are used in

conjunction with the concatenated systems in Figure 1.1, and will be the only method
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discussed here. Because the interleaver is to be used in conjunction with the symbol

based Reed Solomon encoder and decoder, the interleaving will be done on a symbol

level, rather than on a bit level. Block interleavers can be implemented using an MxN

matrix. The symbols are fed into the matrix by column, and fed out by rows. At the

deinterleaving stage, the symbols are fed into the matrix by row, and output by column.

Consider this simple example. The sequence {0, 1, 2, 3 ..... 11} will be fed into a 3x4

block interleaver by column

0 3 6 9

1 4 7 10

2 5 8 11

The interleaver then outputs the data by row. The output sequence is {0, 3, 6, 9, 1, 4, 7,

10, 2, 5, 8, 11 }. The deinterleaving is accomplished by entering the sequence by row, and

outputting by column. The deinterleaved sequence is {0, 1, 2, 3 ..... 1 1 }.

2.2.1 Redecoding of deinterleaving frame using erasure

Paaske [7] has developed a strategy to declare Reed Solomon symbol erasures

using information provided by the deinterleaver. In order to understand the erasure

declaring procedure discussed later in the report, and for comparison purposes, an

overview of Paaske's method is presented below.

Because the Viterbi decoder produces burst errors at it's output, and the

deinterleaver spreads these bursts over several codewords, it is highly likely that the burst

errors will occur at identical positions in neighboring Reed Solomon codewords (RSW)

in each deinterleaving frame. The output of the Viterbi decoder is fed into the
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deinterleaverby row, andthen the columnsare fed to the RS decoderas in Figure 2.4.

Eachcolumn of the deinterleavermakesup a ReedSolomoncodeword. Assumeafter

errorsonly decodingof eachof theRSW, thatsomeof thecodewordsin thedeinterleaver

frameweredecodedcorrectly( _<16errorsin thecodeword)andsomewereundecodable

( > 16 errors in the codeword). Becausea RSW with v errorsand p erasurescanbe

correctedif 2. v -I- p _< dmin, declaring erasures and redecoding the deinterleaving

frame may provide improvement. This improvement is highly dependent upon if the

declared erasure hits an error. Erasures that hit errors will be called good erasures (GE)

and ones that do not hit an error will be called bad erasures (BE).

From Viterbi decoder
)

To

RS decoder
R

S

W

(1)

R

S

W

(2)

I

R R R

S S S 255 RS
a . o _ t

W W W symbols

(3) (4) (I)

Interleaving depth I

i

Figure 2.4 Typical deinterleaving flame
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Paaske'smethodfor declaringerasuresin thede-interleavingflamemakesuseof

the bursty nature of the Viterbi decoderoutput. Becausethe data is fed into the

deinterleaverby row, theburstswil ! spanovermanyRSW asin Figure2.5. Let RSW(i)

denotethe i th codewordin an interleavingframe. It shouldbe noted that a burst of

length1at symbolk startingat RSW(i I ) will affect symbolk in RSW(i I +j) for i1+ j < I

and symbol k + 1 in RSW(i 1+j-I) for i 1 + j > I. If codeword RSW(i) has been correctly

decoded, the positions where errors have occurred will be known. It is highly probable

that the same symbols in the neighboring codewords will also be errors. Paaske

developed 4 erasure declaring procedures (EP1-EP4), three of which declare erasures in

the non-decoded RSW using information provided by the decoded RSW in the

deinterleaving frame. A brief description of the procedures is presented below.

Symbol

Number I

k

k+l

I I I

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :77 r_

ilii!i_!_•_!_i_!_iiiii!;_!iii_iiiiiii_!_i_iii_i_i_iiii_!iiiiiii_i!i_ii_iiiii_iiiiiii_iii_iiiiii_ii_ii_!_iiiii_iiii!iiiii_i_;i_!_!i_?__ill_:I!̧̧ _5̧::7
.>:•.>• :H +...•+•+H•.... •••.....•H:•• : •••.•••••••• T..• ••••H..•.H•••.•.•..•" _ ............... _'_ _::_:: ::"

:':+::+:+:+ "'••+:_:+:+:::+.+:+:+:+:':" :::>:':F::F• :+:4• :+:'<•:':':+: + :+:•
':+:+:+ >> +S+: •'+:+:+:+•':':+:+:+:': ':+:: >: • + "• +:+• :'X':+•+: : :':':':':+:':+:':
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::: :::': ::': _'i:_:: ::::::::::::::::::::::

_''" " .......... " ............... _ ................ _:':llllll'flllllfH'

RSW(i I)

= Symbol error

RSW(i 2)

Figure 2.5 Typical burst error in a deinterleaving frame

EPl: Assume that two RSW have been decoded, and both contain errors in

position k. Let RSW( i 1) and RSW( i 2 ) be two correctly decoded RSW with an error in
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position k in both as shown in Figure 2.6. Also assume that RSW(i 1+1) to RSW(i2-1 )

have not been decoded. It is highly probable that position k is an error in these

undecoded words, and is erased. These •erasures are classified as double sided erasures

(DSE) and the probability that a DSE is a GE is 0.96 [7]. An example of a DSE is shown

in Figure 2.6.

EP2: Assume that a codeword RSW(i) has been successfully decoded and that

RSW(i - I) and RSW(i + 1) have not been decoded. For all error positions in RSW(i)

erase the same positions in RSW(i - 1) and RSW(i + 1). These are called single sided

erasures (SSE) and are GE with a probability of 0.60 [7]. An example of SSE declaration

is given in Figure 2.7 where RSW(i) is the decoded word with errors in positions k I , k 2 ,

k 3 , and k 4 . Note that the SSE declared in RSW(i + 1) at position k 2 and RSW(i - 1) at

position k 3 do not hit symbol errors, and are therefore BE.

Symbol

Number

k-1

k

k+l

i_ i1 +1 i2 -1 i2

RSW

= Symbol Error DSE = Double sided E = Error corrected it,,
erasure decoded word

Figure 2.6 An example of a double sided erasure declaration
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EP3: Assume that RSW(i) has been decoded and contains e errors, and RSW(i - 1)

and RSW(i + 1) have not been decoded. Also assume that s I DSE can be obtained if EP1

is used. The s 1 DSE are combined with s 2 SSE chosen from the e - s I possible SSE.

The optimal choice for the number of SSE s 2 is treated in [7].

Symbol

Number

kl

kl+l iii_i!ii!i!ii_i!:•_ii:liiii!__ _iiiiiii_:_:_i_iiii_i!ii

k 2

k 3

,_ SSE

SSE i ii i:Eiii:_ i i::i:ii$_E :"
• +:: ::::::: ': :::_: :) • :il;_,i:i

k 4

k4+l

:::::::::::_::::::: :::: ::::: :: ::4::.:.:::: ::.:::::: :.:1-:::: ::!!!!! :.::: : : :_.:: : :: :::_:::_::::::::: :::::
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Figure 2.7 An example of single sided erasure declaration

in
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EP4: This procedure assumes that one of the non-decoded RSW has 17 errors.

Two symbols are selected and make erasures. If there are 17 errors, the probability that

an erasure is a good erasure is 1/15.

The erasure declaring procedure proposed by Paaske [7] involves the following

steps:

1) Try decoding each RSW in the deinterleaving frame using errors only decoding.

2) Set i d equal to the number of successfully decoded RSW.

3) If i d = I, go to step 9.

4) If i d = 0, go to step 8.

5) Attempt to decode each non-decoded RSW using EP1.

6) Attempt to decode each non-decoded RSW using EP2.

7) Attempt to decode each non-decoded RSW using EP3.

8) Attempt to decode each non-decoded RSW using EP4.

9) Stop.

For steps 5) through 8), decoding is attempted on the first non-decoded RSW

using the EP specified in the step. If this decoding attempt is successful, then proceed to

step 2). If not successful, then try the next non-decoded RSW using the EP specified in

the step. This continues until either one of the non-decoded RSW is successfully

decoded, or all non-decoded RSW have been tried and none are successful. If all non-

decoded RSW have been attempted using the given EP, and there are no successfully

decoded RSW, then proceed to the next step. Erasure procedures EP3 and EP4 involve
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selectingerasuresin a systematicway. This step is repeatedon eachcodeworduntil

either a successfuldecodingof thecodeword,or a maximumnumberof trials Tma x has

been attempted. In the simulations conducted by Paaske, Trnax = 500 trials.

2.3 Convolutional codes

Convolutional codes are fundamentally different than block codes. Block codes

divide the information sequence into segments of length k, and map these k bits onto a

codeword of length n. Convolutional codes on the other hand convert the entire data

stream into one code word, regardless of the length of the information sequence. A (n, k,

m) convolutional encoder has k inputs and n outputs, where k < n and both k and n are

small integers. The memory order m should be made large in order to achieve a high

degree of error correcting capability [6].

2.3.1 Convolutional encoder

Convolutional codes are implemented using a linear feed forward shift register

circuit. A typical encoding circuit is given in Figure 2.8, and will be used as a model for

discussing convolutional encoders and the Viterbi decoder. The information sequence

u•= (u 0, u_, u 2 .... ) is fed into encoder circuit k bits at a time. The memory elements

are tapped and the bits contained in memory are added together using modulo-2 adders to

obtain a pair of output

V (l) = (Vo (1), VL (l), V2 (1) .... ).

codeword v = (Vo (°), Vo(_), Vl(O)Vl (1), V2 (0), V2(1)

data streams v (°) = (Vo(°>, v_(°), v2 (°).... ) and

These output sequences are combined to create the final

, ...)*
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The constraint length K is defined as the maximum number of output bits that can

be affected by any input bit. Since each information bit stays in the encoder for m + 1

time units, and during each time interval the encoder produces n output bits, the

constraint length is defined as K = n. (m + 1).

u

ml T m2

V (o)

7---o

L:
V (l)

Figure 2.8 A (2, 1, 2) convolutional encoding circuit

The structure of convolutional encoders can be expressed in a number of ways.

One of these ways is using the impulse response of the encoder. The impulse response of

the encoding circuit is obtained by letting the input u - (1 0 0 0...) and observing the

output sequences as u enters the encoding circuit. An encoder with memory m generates

an impulse response of length m + 1. The impulse response, also known as the generator

sequence, is written in the form g(O) = (go(O), g(O), g2(O) ..... g (o)) andm

g(_) = (go (a), g_(_), g2 (_)..... gm(1)). For the encoder in Figure 2.8 the generator

sequences are g(O) = (1 0 1) and g(_) = (1 1 1). The two encoder output sequences can
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be thought of as a linear convolution of the information sequence with the impulse

response. The encoding equations can be written as

v (°_ = u * g(0_ (2.15a)

v (l_ = u* g(Z_ (2.15b)

where * denotes discrete convolution using modulo-2 operations. The output at time t - '_

can be written as

m

vx(J) = Zuz-i. gi j

i=0

=U_ .go (j) + Ux_ 1 .gl (j) + Ux_ 2 .g2 (j) + ... +Uz_ m .gin (j). (2.16)

For the encoder of Figure 2.5, (2.15) reduces to

v_ (°) = u_ _ u_.2 (2.17a)

v,_(0) -- u,_ (_ u,_. 1 (_ u,l:.2 (2.17b)

where _ denotes modulo-2 addition. The encoding of the information sequence

u = ( 1 0 1 1 0 1 ) is illustrated in Table 2.6. At time = 0, the contents of memory are

initially set to zero. At time = 1, the first information bit is fed into the encoder, and the

output of the encoder is obtained by using (2.17). This process continues until all of the

information bits have entered into the encoder. At this point, information bits are still

contained in memory. Two more clock cycles are needed to move the last bits through

the encoder. (k. m) zeros are fed into the input to move the last information bits through

the encoding circuit. The encoded sequence is v = (11 01 00 10 10 00 01 11).
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2.3.2 Decoding of Convolutional codes

The Viterbi algorithm is a widely used method for the decoding of convolutional

codes. The algorithm was developed by A. J. Viterbi in 1967 [6], and is a maximum

likelihood decoder.

Table 2.6 Encoding of the information sequence u = ( 1 0 1 1 0 1 )

Time I Input
I

0

1 1

2 0

3 1

4 1

5 0

6 1

7

8

ml m2 v (°) v(l)

0 0

1 0 1 1

0 1 0 1

1 0 0 0

1 1 1 0

0 1 1 0

1 0 0 0

0 1 0 1

0 0 1 1

2.3.2.1 State Diagram

For every encoding circuit, there will be a corresponding state diagram. An

encoder with memory m will have 2 m possible states, illustrating the contents of the shift

registers in the encoding circuit. There are k binary inputs to the encoder for each clock

cycle, which results in 2 k branches entering and exiting each state. The process details

used to create the state diagram are given in Table 2.7. For the encoding circuit of Figure
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2.8, there will be 4 states, and 2 branches entering and exiting each state.

diagram for the circuit in Figure 2.8 is given in Figure 2.9.

The state

Table 2.7 Development of the state diagram

Initial State m_ m 2

S. 0 0

So 0 0

Sl 1 0

Sl 1 0

$2 0 1

$2 0 1

$3 1 1

$3 1 1

Input u Output v New State

0 0 0 S,,

1 1 1 Si

0 0 1 $2

1 I 0 $3

0 1 1 S,,

1 0 0 Sl

0 1 0 $2

1 0 1 $3

0/00

0/10 NN@ 1/10

1/01

Figure 2.9 State transition diagram for the encoder in Figure 2.8
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2.3.2.2 Trellis Diagram

A trellis diagram is a state diagram extended to include the passage of time. The

encoding of a sequence of data corresponds to a unique path through the trellis diagram.

The trellis diagram for the state diagram in Figure 2.8 is shown in Figure 2.10. If an

information sequence of length k. L bits is fed through an encoding circuit, where L is

the total number of k bit codewords, the resulting codeword will be of length

N = n. (L + m) bits. Each of the 2 _ Code words of length N is represented by a unique

path through the trellis.

I/l( i';'

{)/(}1 ', ,' ",, .'"

t=O t=l t=2 t=3 t=4 t=5 t=6 t=7 ......

Figure 2.10 Trellis diagram (based on the encoder in Figure 2.8)

The convolutional coding problem is shown in Figure 2.11. Assume an information

sequence u =(u 0, u 1..... UL_l) of length k.L bits is encoded into a code word

38



i ¸

Y = (Yo, Y_..... YL+m-I) of length N = n. (L + m) bits. A noise-corrupted version of

the transmitted sequence r is received where r and y have the following form

r = (ro (°), ro¢1) ro(n-t), rl(o) rl(1) (n-I), ... , , , ... , rL+m. I )

y = (yo(O), yo(_) ..... y0(n-t), y(0_, y(_ ..... YL+m. (n-_) .

U y'
,j Convolutional ]

" Encoder

T
Noise

Convolutional

Decoder

Figure 2.11 Convolutional coding system

The Viterbi algorithm generates the estimate y' of the transmitted sequence r which

maximizes the conditional probability p(rl y). Assuming the channel is memoryless,

each received bit will be independent of the noise process affecting all of the other bits.

Therefore p(rl y) can be expressed as

L+m-1

p(r ly) = l-I[ p(ri (°)1 Yi (°))" P(ri°)lyi 0)) "'" P(ri(n-l)lyi(n-l_)]
i=O

L+m-I n-]

= 1-I ( 1-I P(r_(J) I Y_(j_) (2.18)
i=o j=o

The log-likelihood function is obtained by taking the logarithm of each side of (2.18).

L+m-I n-I

log p(r ly) = ,_, _, log P(ri (j) I yi (j))
i=O j=O

(2.19)
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This is done because it is, in general, easier to implement summations rather than

multiplication in hardware. The log likelihood function, log p(r ly), is called the Path

Metric associated with the path y and is denoted M(rl y). The terms log p(r, _) ly_ _)) are

called Bit Metrics

M(r_ °) ly_ °)) = log p(q0)ly0)) (2.20)

In the hardware implementation of the Viterbi decoder, it is more convenient to use

positive integers for the metric values rather than the actual bit metrics. This can be

accomplished by using

M(ri(J) lYi(J)) = a.[logp(ri0)lYi (,j)) + b] (2.21)

where a and b are chosen to obtain small, positive integer values for the metrics which

can be implemented easier in hardware.• The path metric for a codeword y is then

calculated as

L+m-I n-I

M(rly) = _ _LM(r_)ly_°)). (2.22)
i=o j=o

The k th branch metric for a codeword y is defined as the sum of the bit metrics

n-I

M(r k I Yk) = ZM(rk (j) l Yk(3)) • (2.23)
j=0

The k th partial metric for a path is obtained by summing all of the branch metrics for the

first k branches the path follows.

k-I

Mk(rl y) = .__M(r i lYi)
j=O

(2.24)

k-I n-I

_ M(ri 0, lyi(J)).
i=O j=O

(2.25)

40



The Viterbi Algorithm finds the path through the trellis with the largestpath metric,

which is the maximum likelihood estimatey' of the receivedword r. At eachtime

interval the algorithm, computesthe partial metrics enteringeach state. The largest

metric is chosenasthesurvivingpathateachstate,andall otherpathsenteringthat state

arediscarded.This processis continueduntil the endof thetrellis is reached.The final

survivingpathis themaximumlikelihoodestimatey of thecodeword.

2.3.2.3 The Viterbi Algorithm [6]

1. At time t = m, compute the partial metric for the single path entering each

state. Store the value of this metric at each state.

2. Increase t by 1. Compute the partial metric for the path entering each state.

This will be equal to the branch metric entering the state plus the surviving metric from

the previous state. Out of the 2 k paths entering each state, the path with the largest metric

is chosen and the remaining paths are discarded. The metric of the surviving path is

stored at each state.

3. Ift<L+m, repeat step 2. If not, stop. At timet=L+m, all paths have

returned to the all zero state. There will be only one path remaining, and this path is the

maximum likelihood estimate y'.

2.3.2.4 Hard Decision Decoding

In hard decision decoding, the receiver determines whether a zero or one was

transmitted. These zeros and ones are the input to the Viterbi decoder. If the channel is
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memorylessand if theprobabilityof a bit error is independentof thetransmittedbit, then

thechannelis saidto beabinarysymmetricchannel(BSC). TheBSC is shownin Figure

2.12wherep is theprobability that abit is in error.Theconditionalprobabilitiesfor the

BSC aregiven in Table2.8.

1-p
0 1

Transmitted Received

Symbol Symbol

1 0
1 - p

Figure2.12 Binarysymmetricchannelmodel

Table2.8Conditionalprobabilitiesfor BSC

p ( ri ° I yi (j))

ri ° = 0

ri ° = 1 p

yi (j) = 0 [

1-p [ p1-p

yi (j) = 1

For the BSC, choosing a=[log 2 p - log2(1-p)] -1 and b=-log2(1-p) in

(2.21) yields the bit metrics in Table 2.9 [6]. The maximizing of the bit metrics

M(r_ °) lYi°))coincides with the minimization of the Hamming distance. For the BSC

case, the path metric is simply the Hamming distance d(r, y), and the Viterbi algorithm

will choose the surviving paths as the ones that have the minimum partial path metrics.
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" Table 2.9 Metric table for BSC

M( ri(J) l yi (i)) (J) 0Yi - yi (j) = 1

r=0 0 1

r=l 1 0

Consider the information sequence u = ( 1 0 1 1 0 1 ) that was encoded using the (2, 1,

2) convolutional encoder in Figure 2.8. The encoded sequence is y = (11 01 00 10 10 00

01 11). If this sequence is transmitted on a BSC, and no errors occur in the transmission,

r = y. The decoding of this received sequence is illustrated in Figure 2.13. Note that the

final path has a path metric value of 0. The decoded sequence is ( 1 0 1 1 0 1) which is

obtained by tracing back the maximum likelihood path noting the input bit associated

with each branch.

2 3 0 2 3

o o

r = 11 01 00 10 I0 00 O1 11

Figure 2.13 Hard decision Viterbi decoding

of r = (l l 01001010 00 01 11)
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If the same sequence y = (11 01 00 10 10 00 01 1 l) is transmitted and the received

sequence is r = (11 T1 00 10 O0 00 ]-1 11) where the erroneous bits are denoted with

the bar over the bit, the decoding is illustrated in Figure 2.14. The decoded sequence is ( 1

0 1 1 0 1), which is identical to the information sequence. The decoder corrected the

three errors in the received sequence.

]i:

1 2 1 I 2

S It /01. '53 I/Ol 2531/Ol 153 1/01 i_

0 2

r = 11 TI O0 10 O0 O0 TI 11

Figure 2.14 Hard decision Viterbi decoding

of r= (l l ll 0010 00 00 T1 11)

2.3.2.5 Soft Decision Decoding

Hard decision decoding simply assigns a zero or a one at the receiver, utilizing

only two decision regions. Soft decision decoding makes use of q-bit quantization which

results in multiple decision regions ranging from a "strong-one" to a "strong-zero".

Using soft decisions results in approximately 2 dB gain over hard decision Viterbi

decoding [9]. A discrete memoryless channel (DMC) is shown in Figure 2.15. The
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DMC is completely described by a set of transition probabilities between a zero or a one

being transmitted and one of Q = 2 q levels at the receiving end. It has been found that

0

o,

p( ,I ) 02

T,.ansm,tte , eceivedSymbol Symbol

P(IOI) _ _.

11

Figure 2.15 DMC channel model for Q = 4 levels

using 8-level quantization results in only a 0.25 dB loss when compared with using

infinitely fine quantization [ 11]. Consider the transition probabilities given in Table 2.10.

The modified metric table is given in Table 2.11, and is obtained by using (2.21) with b

= 1 and a = 17.3. In choosing a and b, a is typically chosen to obtain a metric value equal

to zero for the smallest metric value. The metric values obtained by using (2.20) are, in

general, real valued. Simply rounding these values off to the nearest integer may lead to

round off errors. The scaling factor b in (2.21) is chosen to make the metrics as close as

possible to being integer values, while keeping the values as low as possible. This will

reduce some of the error that may occur when rounding off the metric values.
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If the same codeword y = (11 01 00 10 10 00 01 11) is transmitted over the

channel, and the received sequence is r= (lll 2 0111 0t02 1212 1201 010 2 0202 0201) ,

then the decoding process using soft decision Viterbi decoding is illustrated in Figure

2.16. The decoded sequence is u = ( 1 0 1 1 0 1), which is identical to the information

sequence that was transmitted.

Table 2.10 Conditional probabilities for DMC

P ( ri (j) [ y_(J)) yi (j) = 0 yi (j) = 1

ri (j) = 01 .4 .1

ri (j) = 0 2 .3 .2

r_(j) = 12 .2 .3

ri O) = 11 .I .4

Table 2.11 Metric Table for DMC

M( ri(J) l yi (j))

r=O l

r=O 2

r=l 2

r=l I

yi (j) = 0 yi (j) = 1

10 0

8 5

5 8

0 10

L

i•

2.3.2.6 Truncation length

In practice, information sequences are very long. It is not practical to wait until

the entire sequence is received to begin decoding. This would result in long delays and

require large amounts of storage. It has been found that a decision can be made on the k
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information bits that were received (t - 8) time units before, where 8 is called the decision

depth, or truncation length. If the truncation length is made 4 to 5 times the constraint

length, there will be very little loss in performance [10].

18 33 69 74 92

(I 0 / I0

0 133

r = lllz 0ill 0102 1212 120i 0102 0202 021 '

Figure 2.16 Soft decision Viterbi decoding of

r= (1112 0111 0102 1212 1201 0102 0202 0201)

The implementation of the truncated Viterbi decoder makes use of 2 m shift

registers, each of length k. 8. At any time t, there are 2 m surviving paths, witla one

surviving path terminating in each of the 2 m states. For each surviving path, the only

information that needs to be stored are the information bits associated with that path. No

information about the route the path took is necessary, just the information (output) bits

associated with that path. At time t, n bits are input into the decoder. The branch metric

is calculated, and the surviving path is chosen as the path with the largest metric, as in the

standard Viterbi decoder. The path information for each state at time t is equal to the
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previous state at time (t - 1) shifted k bits to the left. The k information bits associated

with the surviving branch at time t are then shifted into the register. Consider the Viterbi

soft decoding example given in Figure 2.16. For a decoding depth of 5 = 5, the shift

registers, surviving branches, and metric values are shown in Figure 2.17. At time t = 0,

the shift registers are empty. At each time interval, the survivor branch is chosen, and the

contents of the shift register at the pervious state are copied to the new state, shifted to the

left, and the information bit associated with the branch is inserted into the register. This

process continues until the register is full (i. e. t > 8). At this point, the path with the

highest metric is chosen as the surviving path. Only one bit is output at a time, so this

corresponds to the leftmost position in the shift register, which was the information bit

18 33 69 74 92

0

/ / \ / \
0 5 15 43 ...... 53 77 9

so _

t=O t=l t=2 t=3 t=4 t=5 t=6

Figure 2.17 Shift register contents for the soft decision decoding

in Figure 2.16
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inserted t - 8 time units before. In Figure 2.17 at t = 5 = 5, the path with the highest

metric has a path metric of 87, and terminates in state S 2 . The leftmost bit in the shift

register is equal to 1, and is the output for this time interval. Now, since t > 8, the

decoder can take in n bits, compute the path metric and determine the surviving path for

each state. The decoder then chooses the path with the maximum metric, and outputs the

leftmost bit. At time t = 6 in Figure 2.17, the path with the highest metric has a path

metric equal to 105, and terminates in state S_. The leftmost bit in that shift register is 0,

and is the output bit. This process continues for the remainder of the decoding operation.

2.3.3 Soft Output Viterbi Algorithm

The Viterbi algorithm can be modified to give either a reliability value or a

probability that a given bit is correct. The method used to implement the Soft Output

Viterbi Algorithm (SOVA) is based upon Hagenauer and Hoeher's method [4]. For

simplicity, this discussion will only consider convolutional codes where k = 1. The

reliability of a binary random variable can be defined in terms of a log-likelihood value

Prob(u = 1)
L(u) = log (2.26)

Pr ob(u = 0)

where the sign of L(u) corresponds to the hard decision (i.e. if L(u) > 0, u = 1 and if L(u)

< 0, u = 0) and the magnitude IL(u)l is the reliability of this decision. The larger the

magnitude, the greater the reliability of the decision.
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At eachof the 2m statesat time t, theViterbi decoderselectsthe survivorpathas

the one with the largest path metric.

probabilityarerelatedby

The accumulatedpath metric and the path

t n-1

M(rl y) = log 2 p(r ly) = _ _ log P(ri(J) I yi (j)).

i=l j=O

If the bit metrics are given by M(ri(J)lyiO) ) =

(2,27)

path probability is

Each state S k

a.[log 2 p(ri(J)lyiO)) + b], then the

In 2 M(r t y) - ntb

p(rly) = e a (2.28)

(k = 0, 1..... 2m-l) will have two entering paths, a survivor path with

metric M_ and a competing path with metric M2 (M_ > M2).

choosing the wrong path is given by

The probability of

Prob(path 2)

PSk = Prob(path 2) + Prob(path 1) (2.29)

ln2M 2 - nkb

e a

= (2.30)
ln2M 2 - nkb ln2M_ - nkb

e a +e a

1 In 2
where A- (M1 M 2) (2.31)

1 +e a a

With this probability the Viterbi decoder has made an error in the path it has chosen as

the survivor path. Consider the two paths merging in state S O at time t in Figure 2.18.

The all zero path is the survivor path with metric M_, and the other is the competing path

with metric M 2. The two paths are the same up to time t - _m (_m = 6 in this case). At

this point, the paths diverge and there are three differing information bits between the two
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Figure 2.18 Example of the SOVA

paths at times t-2, t-3, and t-5. Using the probability of selecting the wrong path given in

(2.31), the probability associated with each bit pj can be modified for all bits uj for

times j = t, t-1 ..... t - 8 m [4].

pj "- pj if ulj = U2j

pj = pj(1-PSk) + (1-pj)Ps k

where Ulj and u2j

(2.32a)

if ulj ¢: U2j (2.32b)

are the output bits at time j on paths 1 and 2 respectively. The first

case can be neglected because choosing path 2 instead of path 1 would result in no error

for thej th bit. Because the case in (3.32a) can be neglected, there is only a need to check

ulj _: u2j for times t-m, t-m-1 ..... t-Sm+l. This is because in order to terminate in any

given state at time t, the m input bits prior to time t must be equal in order to create the
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given state, S k . The probability in (2.32b) can be transformed into a bit reliability. From

(2.26), the log-likelihood for the j th bit can be expressed as

1 - pj
Lj = log- (2.33)

Pj

This can be combined with (2.31) and (2.32) to obtain an expression for updating the

likelihood function.

Lj = log
1 pj(1-Psk) + (1-pj)Psk

pj(1-ps k) + (1 Pj)Psk

= log

e A 1

- PJ(1 +e") - (1-pj) 1+ e A

e a 1

PJ(1 + e ") + (1-PJ)I + e A

1-pj a
1 + --e

log pj + ezx- pjezx - log PJ

pje a + 1 -pj ea + 1 -pj

Pj

Lj log 1 + e Lj +A , .= (2.34)
e A + e Lj

A good approximation of this expression is to simply take the minimum of Lj and A as

the new reliability [4].

Lj = min(Lj, A) (2.35)

For register exchange mode with truncation depth 5, each state S k will have a shift

register of 5- q bits where q-1 bits represent the magnitude of the likelihood value Lj
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and one bit for the sign of L j, which corresponds to the output bit uj. The procedure

can be summarized as follows. For every state at time t, compute the path metrics for the

two paths entering state S k . Choose the path with the higher metric as the survivor path

and update the path information in the register for S k . The reliability at time t, L t is

initially set to oo. Compute the metric difference A - In 2 (M l
a

M2). Forj=t-m,t-

m,- 1 .... , t - _m compare the information of the two paths. If u b g: u2j, then update the

new reliability using (2.35). After the surviving paths in each state have been determined,

and the reliability information has been updated for each state, the state with the highest

path metric is determined and the reliability and output bit at t - 8 are the output for the

decoder for time t.
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Chapter 3

Simulation Techniques

Computer simulation plays an important role in the design and testing of

communications systems [5]. The results obtained from simulation can give a good

indication of how an actual system will perform under a variety of conditions.

Performance evaluation of complex communication systems using analytical techniques

can be difficult, if not impossible. Testing of the concatenated coding schemes presented

in this report using computer simulation will give an estimate of how these codes perform

under realistic conditions. In addition, the codes will be simulated using an "ideal"

AWGN channel to test how the coding systems will perform under ideal conditions.

Monte Carlo techniques were used to obtain the results for both simulations. Monte

Carlo techniques are relatively simple to implement. Data is generated at the input to the

simulation. This data is then run through the system being simulated. The data at the

output of the simulation is compared to the data at the input to determine the number of

errors. The probability of an error is simply the number of errors divided by the total

number of simulation points. To be statistically confident in the results, the simulation

should produce at least 50 errors [5]. For small values of bit error rate, a large number of

bits will be needed, which results in longer processing times. This large amount of

processing time is one of the drawbacks of using Monte Carlo techniques. The first step
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in simulating a communications system is to describe the system in block diagram form,

where each block represents a signal processing operation. The model used for this

simulation is given in Figure 3.1.

H  amp,eBit Systems Modulator Filter
Generator

AWGN

ErrorHoeco_'ngH _ H".ceiveCounter S ystems Demodulator Filter

Figure 3.1" Simulation system model

Simulation can either be done at baseband or bandpass. Baseband simulations

have no carrier frequency. This reduces the complexity of the system models such as the

filters. Bandpass simulations require a higher sampling frequency than baseband,-and

therefore, more computational time. Bandpass simulations are necessary when studying

upconversions, downconversions, and the effects of adjacent channel interference. Most

simulations that involve a single information signal can be done at baseband [13]. The

simulation used in this report was performed at baseband.

3.1 Random Number Generators
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The various signals that exist in communication systems are random in nature.

The information signals found in communication systems typically use random voltage or

current waveforms to transmit information from one place to another. Noise is an

unwanted random signal, and causes errors in the information being sent. In order to

represent the random signals found in communication systems, a random number

generator (RNG) will be needed. Random number generators do not produce truly

random numbers, but a sequence of •"pseudo" random numbers which repeat after a

period of time. These sequences should be stationary and uncorrelated. The mean,

variance, and other parameters computed for different segments of the RNG sequence

should be equal for a RNG to be considered stationary [5]. Having a RNG with a period

less than the simulation length will cause correlation in the RNG sequence. Choosing a

RNG with a large period is desirable to avoid correlation.

3.1.1 Uniform Random Number Generator

Uniform RNG generate equiprobbile numbers within a given interval, typically

between zero and one. Uniform RNG can be generated using the following multiplicative

congruential algorithm

Ij+ 1 = a. Ij (modulus m) (3.1)

where a and m are integer constants. If a and m are chosen carefully, (3.1) will produce a

sequence of random numbers with a maximum period of m. The random number

generator used in this simulation can be found in [8] and has a very long period of

2.3 x 1018 . This is accomplished by combining two RNG sequences with
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m1 = 2147483563

a1 = 40014

m2 = 2147483399

a2 = 40692.

In addition to a long period, this RNG passesall of the relevantstatisticaltests [8].

Assumingthe probability of a '0' and a '1' are equal, the randombit streamcan be

obtainedby usingauniform randomnumberwith thefollowing conversion

bj = 0 if Ij < 0.5

bj = 1 if Ij > 0.5

3.1.2 Gaussian Random Number Generator

There are situations that call for random numbers with different distributions, and

are typically generated by performing a transform of a uniform deviate. The generation of

Additive Gaussian White Noise (AWGN) in simulations calls for a sequence of normally

distributed random numbers. This normally distributed sequence can be generated by

using the Box Muller Method [5, 8]. If X 1 and X 2 are two independent variables with

uniform distribution between 0 and 1, then

Y1 = _t + o._/-2.1n(X1).cos(2._.X2) (3.2a)

and

Y2 = _ + 6. _/-2. ln(X 1 ). sin(2 •_. X 2) (3.2b)

are independent Gaussian variables with mean _t and standard deviation 6.
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3.2 Sampling

In order to represent the signal in the simulation, the signals will need to be

sampled. The Nyquist rate of 2. B is the minimum sampling rate for bandlimited signals

of bandwidth B. For simulations, the sampling rate needs to be much higher to accurately

represent the analog signal and to reduce the affects of aliasing. The number of samples

per symbol should be an even integer between 8 and 16. Having the number of samples

per symbol greater than 16 is not necessary for most simulations [13].

3.3 Filters

In Communication systems, filters are needed for the purposes of bandlimiting

signals and rejecting out of band noise. The filtering in the process can produce

something known as intersymbol interference.

3.3.1 Intersymbol Interference

Consider the effects of passing a series of impulses spaced T b seconds apart

through a low pass filter. Each impulse produces its own output from the filter. The

output from one pulse extends into the output of pulse that starts T b seconds later. This

is known as Intersymbol Interference (ISI) and it can produce errors at the receiver.

The effects of ISI can be avoided by an appropriate choice of a low pass filter.

Nyquist proposed a technique that theoretically produces zero ISI. This is accomplished

by creating in the receiver a pulse that resembles the sin x/x shape, crossing the axis at
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intervalsof Tb. The receiversamplesthe incomingwave at intervalsof Tb, so at the

samplinginstant,thetailsof theprecedingoutputsarecrossingtheaxis,andaretherefore

zero. Theonly non-zerocomponentis thepulseto besampled,which solvestheproblem

of interferencefrom other symbols. The filter proposedby Nyquist is the "Raised

Cosine"filter andtheoreticallyproduceszeroISI. Thetransferfunctionfor this filter is

1.0

ft. (f - fl )

H(f) = cos 2 (4_[-_o-_);))

0

where B 0 = R----kis the filter bandwidth,
2

the bandwidth B 0 are related by

for If] < fl

for fl < If] -< 2. B o -fl

for ]f] > 2.B o-fl

ot is the rolloff factor. The frequency fl and

= 1 - fl 0 < (x < 1

Bo

The frequency response for different rolloff factors is given in Figure 3.2. The minimum

bandwidth value of B 0 - Rb is obtained when a = 0.0. This value of rolloff is not
2 . •

obtainable in practice. Practical filters use rolloff values ranging from 0.2 to 1.0 [12].

In some applications, the filtering operation to produce zero ISI needs to be split

between two filters, with one at the transmitter and one at the receiver. The optimum

partition in the sense of optimizing the signal to noise ratio is to divide the filter transfer

function equally between transmit and receive filter [5, 18].

HTransmit(f) -" HR_i_(f ) =
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This is known as a Square Root Raised Cosine filter.

H(f)

0.5

I I I I

_=0.0

_=1.0

o I I
0 0.2 0.4 0.6 0.8

f

Figure 3.2: Frequency responses for different rolloff factors

The Raised Cosine filter produces zero ISI only when driven by an impulse. If the

filter is not driven by an impulse, then the transfer function of the filter must be divided

by the Fourier transform of the input signal. For a NRZ (Non-Return Zero) square pulse

train, the Fourier transform has a spectrum with a sin x/x shape. The transfer function

then becomes

H(f) =

•f. T s
for If[- fl

sin(n;, f. T s )

7z'f'T s . rt'(f-f 1)
•cos 2 for fl < Ifl < 2.B o fl (3.3)

sin(_:, f •Ts) I',_: iB-o_t'i )' - -

0 for Ifl > 2.Bo -fl
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where Ts is the symbol period. Note that the raisedcosinefilter is bandlimitedto

Rs •(1+ c_),andatf = Rs, x/sinx goesto infinity. Therefore,for thissystemto work,o_
2

mustbelessthan1.0[12].

3.3.2 Digital Filters

In this simulation, filters will be needed for the purpose of band limiting signals,

producing zero intersymbol interference (ISI), and rejecting out of band noise. Because

this simulation is in discrete time, digital filters will be needed to accomplish the above

objectives. There are two major types of digital filter design methods: Infinite Impulse

Response (I/R), and Finite Impulse Response (FIR). Both have advantages and

disadvantages, and neither is best for all situations. The optimal filter design method

must be determined by analyzing the requirements and objectives of the application.

The ]JR method uses the widely available filter functions from analog filter

theory. This method starts with an analog filter transfer function, and then translates this

analog function in such a way that makes it suitable for discrete-time systems. Filters

designed using the IIR method will be recursive in nature (the output of the filter depends

on previous filter outputs, as well as past and current values of the input), and the filter's

impulse response will be infinite. IIR filters require fewer coefficients than FIR filters,

and have a closed form design technique that does not require iteration. Some of the

• disadvantages of ]JR filters include non-linear phase response, and the use of feedback in

the implementation that can cause instability if not carefully implemented.

61



The FIR method does not rely on analog filter theory. Instead the frequency

response of the desired filter is used to determine the digital filter coefficients. This

design method is non-recursive in nature, and the impulse response has a finite number of

terms. Filters designed using the FIR method are always stable, and have a linear phase.

FIR filters need a high number of coefficients to adequately describe the impulse response

of the filter. This large number of filter coefficients results in longer processing times,

and can be a great disadvantage if used in real time applications. In addition, the design

procedure may need to be performed numerous times to find the optimum number of

coefficients to meet the requirements of the application.

For this simulation, Square Root Raised Cosine filters will be used on the

transmitting and receiving end of the system. These filters are defined by the frequency

response in Equation 3.3. Using FIR filter design, the filter can be designed directly from

the filter response, whereas in IIR design, an appropriate analog filter containing poles

and zeros is needed to begin the design. In addition, Raised Cosine filters need linear

phase to achieve zero ISI [12]. Using FIR filters, linear phase can be achieved. The only

drawback to the design of Square Root Raised Cosine filter using FIR method is the large

number of coefficients needed to achieve an accurate magnitude response. For this

simulation FIR filter design method will be used to design the Square Root Raised Cosine

filter. The filter coefficients were generated using a program written in Mathcad.

• 3.3.3 FIR Filter Design of Transmit Filter
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For illustration, the designprocedurefor obtainingthe FIR filter coefficientsfor

thetransmit filter will bedemonstratedbelow. The procedurefor obtainingthe receive

filter coefficientsisexactlythesame,theonly differencebeingthefilter transferfunction.

FIR filter designcaneitherbedoneusingthefilter transferfunction or the filter

impulseresponse.Thesquareroot raisedcosinefilter is bothspecifiedin the frequency

domainandin thetime domain. Thetransmitfilter needsto becascadedwith x/sin(x) in

orderto obtainzeroISI for aNRZ input,so it is moreconvenientto startin thefrequency

domain. Thetransferfunctionfor thetransmitfilter is

_'f'Ts for Ifl < fl
sin(_; • f. T s )

_f'Ts _'(f- fl)

H(f) = sin(_.f.Ts).COS(4.(Bo _fl)) for fl < Jfl < 2Bo-fl (3.4)

0 for If[ > 2.B 0 - fl

and is shown in Figure 3.3. The impulse response is obtained by taking the inverse fast

Fourier transform of the filter transfer function. This analog transfer function first needs

to be sampled. The signals in the simulation have a symbol rate R s, and symbol period

of T s . In the time domain, the signal waveform is sampled at 16 samples/symbol (Nss =

16). The sampling frequency is given by fs = Rs •Nss Hz, and the spacing between

•IZ¸
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Figure 3.3: Square root raised cosine filter with

x/sin(x) equalization and rolloff factor o_- 0.45 ( R s = 1)(normalized frequency)

samples is At - Ts seconds. In the frequency domain, the filter response is periodic
Nss

in fs (see Figure 3.4). The total frequency span is fs "Nss, and for a FFT of length N, the

frequency spacing is Af = fs" Nss After the filter transfer function has been sampled
N

with frequency spacing Af, the impulse response of the filter is obtained by taking the

inverse FFT (IFFT). The impulse response of the square root raised cosine filter is shown

in Figure 3.5. The impulse response of this filter is infinitely long. Truncation of the

impulse response will allow us to have a finite number of coefficients in our FIR filter.

The impulse response should be truncated at a point where the response has sufficiently
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100.

In this casewe will chosethe numberof one-sidedcoefficients(M) to be

H(f)

0
0

I I I I I I I

I I I I I I I
2 4 6 8 10 12 14

f

16

Figure 3.4: Transmit filter transfer function (normalized frequency)

0,1

0.05

h(n)

0

-0.0_*

i I I I

i

I I I I
0 20 40 60 80 100

Figure 3.5: Filter impulse response

The impulse response is actually two sided (see Figure 3.6). Because there is filter output

before t = 0, the filter is non-causal. In order to correct this, a delay will be introduced to

make it causal. This is done by shifting the impulse response M coefficients to the right

(see Figure 3.7). In order to improve the design of this filter, windowing techniques will

be used. Instead of abruptly cutting off the coefficients at +_M, window functions

smoothly reduce the filter coefficients to zero. For this filter, a Hamming window is used
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to accomplishthis (SeeFigure 3.8). The filter coefficients are 'windowed'

equation:

h(n) = hideaI • w(n) n = 0,1 ... 2.M

wherethewindow functionfor aHammingwindow is givenby:

by the

0.05

h(n)

0

-0.0

w(n) = 0.54 - 0.46.cos(-_)

I I I I I I I I I

I I I I I I I I I
100 -80 -60 40 20 0 20 40 60 80 100

n

Figure 3.6: Non-causal impulse response

0.1
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h(n)

-0.05

I I I I I I I I I

I I I I I I I I I
0 20 40 60 80 100 120 140 ! 60 180 200

n

5

Figure 3.7: Causal impulse response
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The resulting filter coefficients are used to filter a signal x(n) using the following

equation:

y(n) =

2*M

h(k)' x(n - k)
k=0

The output y(n) of the filter is dependent on the current input x(n), and the 2. M previous

inputs. There is no feedback involved, so the filter is always stable. The magnitude

response of the filter as compared to the original filter is given in Figure 3.9.

wi 0.5

I
0

I

I I
50 100 150 200

i

Figure 3.8: Hamming window function

By using more filter coefficients, the response of the FIR filter will be closer to the

original transfer function of the filter.

3.4 Adding noise

In order to make the simulation as realistic as possible, the channel model is

chosen to be the Additive Gaussian White Noise (AWGN) channel. The noise signal can
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be generated by producing a Gaussian, or normal sequence with standard deviation

using (3.2).

H(t)

1.2

O.8

0.6

0.4

0.2

I I I I

\,./

FIR filter response _\

- /l

I I I

0 0.2 0.4 0.6 0.8

f

Desired Response

m

w

Figure 3.9: FIR frequency response vs. analog filter response

for a square root Raised Cosine filter with x/sin(x) equalization

3.4.1 Noise Equivalent Bandwidth

The noise equivalent bandwidth B N will have to be calculated in order to add the

correct amount of noise to the simulation.

with transfer function H(f).

Consider the lowpass filter in Figure 3.10 a)
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Figure 3.10 (a) Receive filter (b) Noise equivalent bandwidth filter

If white noise with a power spectral density --NO is applied at the input to the filter, the
2

total noise power at the output is

P= f _---9-0•[H(f)[2 df (3.4)

oO

= N O  lH(f)[ e df

0

(3.5)

3.4.2 Calculating the noise variance

Now consider an ideal filter H I (f) with single sided bandwidth B N as in Figure

3.10 b). If the same white noise signal is applied to the input of the ideal filter, the total

noise power at the output of the filter is

69



BN
No

. Hi(f) 2 df (3.6)Pideal = ; T
-B N

!_i ' /

= NoBNIH(0)I 2 (3.7)

The bandwidth of the ideal filter can be chosen so that the total noise power at the output

of the ideal filter is equal to the total noise power at the output of the real filter. Equating

(3.5) and (3.7) and solving for B N yields

Iln(f)12df

BN_ 0 (3.8)
In(O)l2

White noise has a constant PSD for all frequencies

SNN(f)- NO for-oo
2

_<f<oo

SNN (f)

N O / 2 , ,

( T ) f

Figure 3.11: Power spectral density of AWGN

,H

?

Unfortunately, this signal take an infinite amount of power to produce. For simulation

purposes, we will be working with a system that has a finite bandwidth. The receive filter

has a bandwidth B. The sampling frequency fs is chosen to be greater than 2B. If we use

bandlimmited white Gaussian noise with a constant PSD over the simulation bandwidth,
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N____Q_O fs
SN_N (f).. = for < f <2 2 2

the response of the system will be the same whether SNN(f ) or SNsNs (f) is used [5].

H(f)

a)

{
No/2

-fs m
2

SNsNs(f)

l
) f

2

b)

Figure 3.12: a) Filter transfer function b) Bandlimited AWGN before filtering

The total power for the bandlimited AWGN is equal to

2 Nofs
cyx - (3.9)

2

After AWGN is passed through a filter with noise equivalent bandwidth B N , the total

noise power is equal to

N O P
--.2.B N = NoB N - (3.10)

2 SNR
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whereP is the total signalpowerandSNR is thesignalto noiseratio. Combining(3.9)

2
and(3.10)andsolving for cyx

(yx2 _ P fs (3.11)
SNR 2' BN

(yx2is the total noisepowerthat is to beaddedto the channelbeforethe Rx filter. The

noisecanbegeneratedby using(3.2) to createa sequenceof Gaussianrandomvariables

with la= 0 and _ = cyx.

Sometimesit is convenientto expressthe probability of a bit error Peasa

Eb
functionof p -

NO
whereEb is thebit energyand NOis thenoisedensity.The noise

variancewill beexpresseddifferentlythan(3.11).

_ Eb
Let p- --. In terms of N0

NO

NO
Eb

P
(3.12)

The signal power P is equal to

m
E s E b .k

Ts Ts
(3.13)

where k is the number of bits per symbol. From (3.13), the energy per bit is

p • Y s
E b -

k
(3.14)

2_ N0fs
The total noise power before filtering is equal to c_x

2
from Figure 3 b).

Combining this with (3.12) and (3.14) yields
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2_ P'Ts'fs (3.15)
2.9.k

The sampling frequency is defined as

so (3.16) can be rewritten as

fs = Rs "Nss (3.16)

2 _ P'Nss
(Yx (3.17)

2.9.k

The noise can be generated by using (3.2) to create a sequence of Gaussian random

variables with g = 0 and _ = _x-

3.4.3 Ideal Channel model

An ideal channel can be used to obtain results that are not degraded by the filters.

There is no need to simulate the analog signal, and modulate, filter, and add noise. The

binary data can have Gaussian noise added directly to the data bits, and then these bits

can either be soft or hard decoded. For each binary bit u j, the noise corrupted bit can be

obtained by using (3.2) with la = 1 for Uj -" 1, and la = -1 for Uj = 0. The variance of the

noise is

where 9 is the signal to noise ratio.

I_ 2 1

29

For hard decisions V j, if the noise corrupted uj is

greater than zero, then Vj "" 1.

obtained.

Otherwise, Vj = 0. Using this method, ideal BPSK is
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3.5 Simulation Results

The simulation was run without coding systems to verify the simulation was

working properly. The results were compared to the theoretical BPSK results, which are

given by

pe = 1.erfc( E/-_/

2 _._/No J

where E b is the energy per bit, N o is the single sided noise power spectral density, and

2 i e-U2/2 du
erfc(x) = -_-_" x

The results of the simulation are shown in Figure 3.13. Looking at the results of the

simulation, two observations can be made. First, for greater values of E b /No, the

simulation results deviate from the theoretical curve. This can be attributed to the effects

of filtering. Second, for higher values of rolloff, the performance of the simulation

becomes closer to the theoretical. This can be attributed to the increase in bandwidth

which comes from an increase in the rolloff value.
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Figure 3.13 Results of the BPSK simulation for different values of filter rolloff.
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Chapter 4

Erasure Methods and Simulation Results

The purpose of this chapter is to investigate the performance of the concatenated

system given in Figure 1.1, and to discuss and propose methods of declaring RS symbol

erasures to improve performance. It is the goal of these methods to recognize symbols

that are in error and erase them, thus utilizing the full capacity of the errors and erasures

Reed Solomon decoder. The success of these methods is highly dependent on being able

to successfully identify the errors in each Reed Solomon codeword (RSW). The

performance of the concatenated system without erasures was tested. In addition, a basic

method for erasure declaration using the reliability information provided by the SOVA

was implemented. This method is based on [14]. Two new procedures for declaring

erasures are proposed. Both use the reliability information from the SOVA in addition to

information provided by successfully decoded RSW in the deinterleaving frame. The

results of these two methods are presented and compared to Paaske's [7] method.

4.1 Concatenated system simulation results

The performance of the concatenated system presented in Figure 1.1 was

investigated. More specifically, the concatenated system used by NASA for deep space

communication has been simulated. This system uses a rate 1/2, K = 7 convolutional
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codewith Viterbi decodingasthe innercodeanda (255,223) ReedSolomoncodeasthe

outer code. This coding systemwas testedusing a real systemcontainingsquareroot

raisedcosine FIR filters using a rolloff value of o_= 0.5, and an ideal system. The

performanceevaluationstudied the effects of using no interleaving,and interleaving

depthsI = 2, 6, 8. In addition,theeffectof increasingthetruncationlengthsfrom 8 = 32

to 8 = 100,andsoft decisionlevelsfrom L = 8 to L = 64weresimulated.

Five systemshavebeendevelopedto studythe effectsof varyingthe truncation

lengthandnumberof soft decisionlevels,andarepresentedin Table4.1. Thesesystems

will be simulatedfor no interleaving,and for interleavingdepthsI -- 6 and 8. For the

following results,thegain is measuredatabit errorrateof 10.5 .

Table4.1 Varioussystemssimulated

Real/Ideal Truncation Soft decision
length 5 levelsL

System1 Real 32 8

System2 Ideal 32 8

System3 Ideal 32 64

System4 Ideal 100 8

System5 Ideal 100 64

no

Figure 4.1 contains the simulation results for the concatenated coding system with

interleaving used. It is shown that the real system with 5 = 32 and 8 level soft decision
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Figure 4.1 Simulation results for the concatenated system with no interleaver
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Viterbi decoding (system 1) results in a loss of about 0.3 dB when compared with the

ideal system with the same truncation length and soft decision levels (system 2). There is

approximately a gain of 0.2 dB when the decision depth 8 is increased from 8 - 32 to 8 =

100. This can be illustrated in Figure 4.1 by comparing the difference in performance

between system 2 (8 = 32, L = 8) and system 4 (8 = 100, L = 8). Likewise, there is also a

0.2 dB gain when the decision depth in system 3 is increased from 8 = 32 to 8 - 100 to

form system 5. When the number of soft decision levels is increased from L = 8 in

system 2 to L = 64 in system 4, the result is about a 0.15 dB gain. Likewise, the increase

in soft decision levels from system 3 to system 5 results in roughly 0.15 dB gain. The

combined use of 8 = 100 and L = 64 results in about 0.35 dB gain over the ideal system

using 8 = 32 and L = 8. These gains are consistent for interleaving depths I = 6 (Figure

4.2) and I = 8 (Figure 4.3).

The benefits of using an interleaver is demonstrated in Figure 4.4, where the

simulation results for system 5 using no interleaving, and depths I = 2, 6, and 8 are

presented. It has been shown that the use of interleaving depth I = 2 can provide

approximately 0.2 dB gain over the system using no interleaving. When the interleaving

depth is increased from I = 2 to I = 6, there is an additional gain of slightly more than 0.2

dB, for a total of roughly 0.4 dB over the system using no interleaving. The use of an

interleaver with depth I = 8 provided a minor gain over the system using I = 6. The total

gain of using I = 8 when compared to the non-interleaved system is approximately 0.45

dB. It should also be noted that the concatenated coding system using interleaving depths

greater than 8 resulted in little or no improvement over the system using depth I = 8.
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As wasexpected,gainscan be obtainedin the concatenatedcoding systemby

increasingthe truncationlengthandthenumberof soft decisionlevelsused. The useof

an interleaverbetweentheconvolutionalcodeandtheReedSolomoncodealsoprovided

gain over the system using no interleaving. The

improvementsdo not require any additional coding

additionalhardwaresizeandcomplexity.

gains obtained through these

or bandwidth expansion,only

Another way gain can be obtained without the use of additional coding or

bandwidth expansionis through the use of erasures. A Reed Solomoncode with

minimum distance d min can correct v errors and 9 erasures as long as the inequality

dmi n < 2v + 9 is satisfied. Clearly, if errors are transformed into erasures,

performance can be improved. Because the error positions are not known ahead of the

decoding process, it is necessary to find methods that can identify unreliable Reed

Solomon symbols. Once these symbols are identified, they can be erased. There is the

possibility that correct symbols may be erased, however. For the performance to be

improved, the erasure method must erase more errors than correct symbols.

For the concatenated system in Figure 1.1, the Viterbi decoder produces hard

output uj e {0, 1 }. It has been shown in section 2.3.3 that the soft output Viterbi

algorithm produces a reliability value Lj associated with each outgoing bit ujl This

reliability information can give an indication to which Reed Solomon symbols are in

error. In the first method investigated, bit reliabilities are transformed into RS symbol

reliabilities. A table of the least reliable symbols for each RS codeword can then be
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compiled,andthe leastreliablesymbolscanbeerased.

erasuresin presentedin greaterdetailbelow.

The first methodfor declaring

4.2 Erasure Method 1

The first methodfor declaringRSsymbolerasuresis basedon the methodfound

in [14]. The SOVA is usedto obtain the reliabilities of each output bit from the Viterbi

decoder. The output of the SOVA is quantized using q+l bits, where q bits represent the

magnitude of the decision (the reliability), and 1 bit represents the hard decision. In

general, these reliabilities are real valued, and have a range between 0 and infinity. It is

not necessary to quantize the reliability values between 0 to infinity, but rather between 0

and some value Lma x . The reliability values produced by the SOVA will be assigned one

of 2 q levels between 0 and Lma x. If a reliability is greater than Lmax, then the

reliability level is set to 2 q (i.e. the maximum level). For this simulation q = 8 and

Lma x = 8 were used. From here on out, the "reliability value" Lj for a bit will refer to

the q-bit quantized level.

Before declaring RS symbol erasures, the bit reliabilities from the output of the

SOVA need to be converted to RS symbol reliabilities. This can be accomplished by

simply using the minimum bit reliability in a symbol as the symbol reliability. This can

be rationalized as follows. If a bit has a small reliability, and is in error, the symbol will

be in error also. Therefore, the best information contained in the symbol reliability is

contained in the minimum bit reliability. For each RS codeword (RSW), a reliability

table (RT) is formed. The RT has m e positions, where m e is the maximum number of
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erasures allowed. If the least reliable symbols in the RSW occur at positions k j, where j

= 1, 2 ..... m e, then RT(j) = kj. RT(1) contains the least reliable position, RT(2)

contains the 2nd least reliable symbol, etc. The RS decoder will first attempt to decode

without declaring erasures. If this is a successful decoding, stop. If not, the two symbols

with the smallest reliabilities are erased (RT(1) and RT(2)), and decoding is attempted

again. If successful, decoding stops. If unsuccessful, the four least likely symbols are

erased (RT(1) through RT(4)) and decoding is attempted again. For each unsuccessful

decoding, two more erasures are declared until either a successful decoding is achieved,

or the maximum number of erasures m e is reached. This maximum number is chosen to

be 16 erasures. Using more than 16 erasures gave poorer results due to the fact that the

symbols reliabilities at the output of the SOVA hit more correct symbols than errors. In

addition, the probability of a decoding error is also increased. A decoding error occurs

when a codeword contains more than t errors, and fails to notice that it does. The decoder

claims that there are less than t errors. This is different than a decoding failure. A

decoding failure happens when there are more than t errors, and the decoder detects that it

contains more than t errors. For a t error correcting RS code, the probability of a

decoding error is I/t! [7, 14, 19]. The procedure for erasure decoding using Method 1 is

presented below.

4.2.1 Procedure for erasure decoding using Method 1

The decoding of each RS codeword involves the following steps:

1. Set the number of erasures n e = 0.
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2. Attemptto decodetheRScodewordusingerrorsonly decoding.If successful,stop.

3. Set ne- ne +2.

4. Erasethe ne leastreliablesymbolsasdeterminedby the reliability table,andattempt

erroranderasuresdecoding.If successful,stop.

5. If ne = me(themaximumnumberof erasuresallowed),thenstop.

6. Goto step3.

7. Stop.

4.2.2 Simulation Results for Method 1

The results of the simulation for Method 1 are presented in Figures 4.5 through

4.7. These figures contain the results using system 1, 2, and 5 for no interleaving (Figure

4.5), and interleaving depths I = 6 (Figure 4.6) and I = 8 (Figure 4.7). The results of the

corresponding concatenated code using no erasures is also presented for comparison

purposes. From these figures, it is evident that the use of erasure Method 1 results in

approximately O.1 dB gain over the non-erasure concatenated system. This result was

consistent regardless of the truncation length, number of soft decision levels_ and

interleaving depth used by the concatenated system. It should be noted that the gains

obtained by using different interleaving depths with erasure Method 1 were identical to

the gains obtained when using different interleaving depths in the standard concatenated

system. In addition, it should also be noted that increasing the decision depth and number

of soft decision levels for the systems simulated using erasure Method 1 were consistent

with the results for the concatenated system presented in section 4.1.
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Figure 4.5 Simulation results for Method 1 with no interleaver
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Figure 4.6 Simulation results for Method 1 with interleaver depth I = 6

88



I I I I I

No erasures

Erasure Method 1

Pe

0.001

System 1

,stem 2

1.10_4

l.lo-5

System 5

\ \
\ \

\
\

1.10-6 I I I I I I,
1.8 2 2.2 2.4 2.6 2.8 3

Eb/No

Figure 4.7 Simulation results for Method 1 with interleaver depth I = 8

It has been shown that the use of erasure Method 1 results in approximately 0.1

dB gain over the concatenated system using no erasures. The reason that the performance
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is not greatly increased is because the erasure declaring process is not optimal. In general,

when erasing two symbols at a time, gain is only achieved when both erased symbols are

errors (GE). If only 1 erasure is a GE, the capacity of the code stays the same, and if

neither erasure is a GE, then capacity of the code actually decreases. Method 1 uses the

reliability information generated from the SOVA, and the symbols with the smallest

reliabilities are systematically erased. A symbol with a small reliability does not

guarantee a GE. For example, the smallest reliability value (Lj = 0) occurs when there is

a metric difference A -- 0. Because the path metrics are equally likely, the probability the

wrong path has been chosen is 0.5. This is why a small reliability value does not

guarantee a wrong path has been taken. The reliability table used in Method 1 can be

modified to give more reliable information. This can be accomplished by using decoded

Reed Solomon codewords in the deinterleaving frame to provide information to the non-

decoded Reed Solomon codewords. This information can be used to construct a

reliability table with more accurate information, and then the unreliable symbols can be

converted into RS symbol erasures. The second method for declaring erasures is

presented below.

4.3 Erasure Method 2

It has been found that the burst errors at the output of the SOVA contain the same

reliabilities within the burst. Consider the two paths merging in state S k at time t in

Figure 4.8. The survivor path has metric M 1 and the competing path has metric M 2.

90



Competing Path

Metric M 2

• /
t-8 m Sk
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Symbol A A A A
Reliabilities

Figure 4.8 The updating of symbol reliabilities in the SOVA

The reliabilities Lj on the surviving path in the SOVA are updated by selecting the

minimum between Lj and A, where A is the difference between the two paths merged in

state Sk . When the bit reliabilities are converted to symbol reliabilities, the minimum bit

reliability is chosen as the symbol reliability. Assuming that A is the minimum and this

is part of the surviving path, then consecutive symbols in the surviving path have

identical reliabilities. In the standard Viterbi decoder, error events occur when at time t

the decoder chooses the wrong path. This is also what happens in the SOVA. If the path

with the maximum metric is the wrong path, then all of the reliabilities for the differing

bits will be equal to A. If this is the path selected by the SOVA as the output of the

decoder, then the reliability will be equal for the length of the burst. It is apparent from

Figure 4.8 that all symbol reliabilities in the erroneous path are equivalent. This

information can be used to distinguish error paths and declare erasures, and can be
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accomplishedby usinga methodsimilar to the one proposedby Paaske. Assumethat

after an initial decodingattemptof a deinterleavingframe,someof theRSW havebeen

successfullydecoded,while othershave not. The error positions in the successfully

decodedcodewordsareknown. Usingthe aboveobservation,if aneighboringsymbolin

anundecodedRSWhasanidenticalreliability valueasthecorrectedsymbolin adecoded

RSW,it is highly probablethatthatsymbolis alsoanerrorandcanbeerased.

As mentioned previously, a symbol with a low reliability value does not

necessarilydenotea symbolerror. FromFigure4.8, it canbeseenthat if A is small,then

it maybecontainedin thereliability tablefor a non-decodedRSW.Assumethat a RSW

is decodedand the error positionsare known. The correctpositionsarealso known.

These correct positions can be used to eliminate other correct symbols from being

includedin the reliability tablefor non-decodedRSW. If the neighboringpositionsof a

correct symbol havethe samereliability, then it is highly probablethat this symbol is

correctalso. Theprocedurefor erasuredecodingusingMethod2 is summarizedbelow.

A deinterleavingflame with interleavingdepthI containsI RSW. Decodingof

eachRSW in theframeis first attempted usingMethod 1. For eachRSW,a tableof the

least reliable symbols is compiled,and for eachunsuccessfuldecodingattempt,two

additional symbolsareerased,anddecodingis attemptedagain. This processcontinues

until either a successfuldecodingoccurs,or a maximum amountof erasureshasbeen

reached.If lessthanI codewordsaresuccessfullydecoded,redecodingis attempted.The

RT usedin Method 1containsthe leastreliablesymbolsasdeterminedby the outputof

the SOVA. The reliability table can be modified using information provided by the
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decodedRSW in thedeinterleavingframe. Let RSW k (i) denote the k-th symbol of the i-

th RSW in the deinterleaving frame, and let Lk(i ) be the reliability associated with

RSW k (i) as determined by the SOVA. For convenience, if i + j > I, then RSW k (i + j)

corresponds to RSWk+ 1 (i + j - I) and if i + j < l, RSW k (i - j) corresponds to

RSWk_ 1(i - j + I). To simplify notation, RSW k (i __ j) will be used even if the position

is at k + 1. In addition, each symbol will have a flag associated with it. Let F k (i) be the

flag for the k-th symbol in the i-th RSW. There are three possible values for F k (i) :

Fk(i ) = 0 Unknown

F k (i) = 1 Possible Good Erasure (PGE)

F k (i) = 2 Possible Bad Erasure (PBE)

Using the already decoded RSW in the deinterleaving frame, the flags for all the symbols

in the undecoded RSW will be updated. The table of least reliable symbols can be

modified using the symbols that are flagged as a PGE (Fk(i) = 1) as the least reliable.

The remainder of the table is filled with the symbols flagged as unknown (F k (i) = 0)

with the minimum reliabilities. Symbols that are presumed to be correct are flagged as a

PBE (F k (i) = 2) to avoid being used in the RT. It was found through simulation that the

probability that a symbol flagged as a PGE is a GE is 0.93 and the probability that a

symbol flagged as a PBE is a BE is 0.99.

Figure 4.9 shows a partial deinterleaving frame, two bursts, and the reliability

values associated with each symbol. Note that the reliability in each of the burst errors is
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identical. Assume that RSW(i) has been successfully decoded in the deinterleaving flame

of Figure 4.9. After the decoding, the error positions in RSW(i) are known. The error at

position k has a reliability of Lk(i) = 2. Erasure Method 2 checks the reliability at

position k in RSW(i-1). If the two have equal reliabilities (i.e. Lk(i- 1) = Lk(i)), then

RSW(i-1) position k is flagged as a PGE (Fg(i-1) = 1). If the two are not equal,

searching in this direction stops, and searching in the other direction begins. Position k in

RSW(i+I) is checked for equal reliabilities, and if so, position k in RSW(i+I) is flagged a

PGE. Searching RSW(i_+j) continues in both directions until either L k (i _+ j) _ L k (i),

or j = I-1. The later condition can be reasoned by noting that position k in RSW(i+I) is

simply position k+l in RSW(i).

Symbol
Number

k

k+l

k+2

k+3

k+4

256

80

117

11

161

256

212

256

117

11

161

188

212

256

117

11

161

204

66

11

161

204

66

11

256

204

66

11

256

8O

66

11

256

212 212 93 93 93

80

66

161

256

212

93

i-I i i+l

= Symbol Error RSW

Figure 4.9 Deinterleaving frame with reliability information

Assume that the two least reliable symbols contained in the RT for the first

decoding try (Method 1) are symbol k with reliability Lk = 2 and symbol k + 2 with
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reliability Lk+2 = 1 1. ff two erasures are declared, position k would be a GE and

position k + 2 would be a BE. After decoding RSW(i), it has been found that position k +

2 is correct. Because Lk+ 2 is a small reliability, it is most likely contained in the RT for

each RSW that has Lk+ 2 = 1 1. The same method used to flag PGE can be used to flag

PBE. After doing so, position k+2 will not be in the RT for the next iteration of

decoding. The procedure used to update the flags (UFP) in the undecoded RSW using

information in decoded word RSW(i) is as follows:

4.3.1 Procedure for updating the flags (UFP)

1. Set k=0

2. If RSW k (i) is an error set F k (i) = 1 (PGE). Else, set F k (i) = 2 (PBE).

3. If Lk(i) > Lma x go to step 13

3. Initialize j = 1.

Start looping backwards. RSW k (i - j)

4. If L k(i-j) _ L k(i), go to step 8.

j=l,2 ..... I-1.

5. If Lk(i-j) = Lk(i ) set

F k (i - j) = Fk (i)

j=j+l

6. If j = I - 1, go to step 8.

7. Go to step 4.

Start looping forwards. RSW k (i + j) j=l,2 ..... I-1.
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8. Initializej = 1.

9. If Lk(i+j) ¢: Lk(i),gotoste p 13.

10. If L k(i+j) = L k(i) set

F k(i+j) = F k(i)

j-j+l

11. Ifj=I-l,gotostepl3.

12. Go to step 9.

13. k=k+ 1.

14 If k = 254, Stop else go to step 2.

After the flags have been updated using the information provided by the

successfully decoded RSW, the RT for each of the yet to be decoded RSW needs to be

updated. The procedure for updating the RT (URTP) is presented below.

4.3.2 Procedure for updating the reliability table (URTP):

1. Determine the number of PGE ( npG E ) in RSW(i) by checking the symbol flag Fk (i).

These GE occur in positions kj , j = 1, 2 ..... npG E .

2. Fill the first nGE positions of the reliability table with the positions where a GE has

been flagged. RT(i) = kj forj = 1, 2 ..... nGE

3. If npG E < me, fill the remainder of the RT with the symbols with the minimum

reliabilities determined by the SOVA output. Out of all the symbols that have Fk (i) = 0,

determine the m e- nGE minimum symbol reliabilities. These minimum values occur in
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positions k e, g = 1, 2 ..... m e- npG E . Fill the remaining m e- npG E positions in RT

with the symbols with the minimum reliabilities. RT(nGE + 1) = ke, g = 1, 2, ..., m e-

n PGE •

The procedure for decoding using Method 2 is presented below.

4.3.3 Procedure for decoding using Method 2

1. Attempt initial decoding using Method 1.

2. Set i d = number of correctly decoded RSW.

3. If i d = I, go to step 9.

4. If i d = 0, go to step 9.

5. For each decoded codeword, declare flags in the undecoded RSW using UFP.

6. For each non decoded codeword, update the reliability table using URTP.

7. Attempt decoding using Method 1 with the updated RT.

8. If step 7 yields at least one successfully decoded RSW, go to step 2.

9. Stop.

/t

4.3.4 An example of erasure decoding using Erasure Method 2

As an example, consider the deinterleaving frame in Figure 4.10. This frame was

simulated at a signal to noise value of E b / N O = 1.9 dB. The error positions are denoted

by the shaded areas, and the reliability values are given. This frame contains 8 RSW with

a total of 161 symbol errors. It should be noted that each RSW in the deinterleaving

frame contains more than 16 errors. If no erasure information was used, every RSW in
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the flame would fail to decode. The reliability table for each RSW in the flame for the

first iteration is presented in Figure 4. i 1, where the reliability value and symbol position

are given (L k, k). In addition, the number of decoding trials for each codeword is also

shown. The RT is initially formed by using the minimum reliabilities generated by the

SOVA. For the first iteration, decoding of each RSW is attempted using Method 1.

RSW(1) successfully decodes after 6 decoding trials using 10 erasures. RSW(3) is

successfully decoded after declaring 4 erasures (3 decoding trials), and RSW(8) decodes

using 2 erasures (2 decoding trials). All other RSW fail to decode after 9 decoding trials

apiece. Now, the RT is modified by updating the flags using UFP, and the updated RT is

compiled using URTP giving the symbols with flag = 1 (PBE) the highest priority in the

table. The modified RT is in Figure 4.12. Decoding is attempted again using Method 1

with the updated RT. For this iteration, RSW(2) decoded successfully using 14 erasures

(8 decoding trials), RSW(4) using 12 erasures (7 trials), and RSW(7) using 8 erasures (5

trials). Decoding attempts for RSW(5) and RSW(6) are once again unsuccessful. The

flags for RSW(5) and RSW(6) are updated using the information provided by RSW(2),

RSW(4), and RSW(7). The updated RT is generated using the updated flags, and is

presented in Figure 4.13. Decoding is attempted again using Method 1. RSW(5) is

decoded using 16 erasures (9 decoding trials), and RSW(6) is decoded using 14 erasures

(8 decoding trials). Erasure Method 2 required a total of

successfully decode this frame. This results in an average of

RSW.

11 1 decoding trials to

13.9 decoding trials per
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16 30, 126 i_:::i_i::_i::::il49, 231 i_iiii i:_:i: i::3ii_:iiiSi_i:i":.............._:::::::::_i::i2N_it:N_i::i::18, 13 :::._::_;i;Z_
::::::::::::.:::::!:i::!i:: :: :: : :::::: :!: : ::::'::"::::::: : :::, :::::i::i:i::i::i:: _t:i:i:i/,i; :,.::: -..:

#
of 6 9 3 9 9 9 9 2

Trials

Indicates an erasure hits an error (GE)

Figure 4.11 The reliability table for tile first iteration
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:i ¸ .

i RSW(I)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#

of

Trials

RSW(2) RSW(3) RSW(4) RSW(5) RSW(6) RSW(7)

^ GE, 1 i

PGE, 52 !P!G_ _,59 :!:t_GL 3_ PGE, _: :PGE, 27
::: ::5:::: • ::::: :x.: :::::::::¢.:

I:PGE, 66 PGE, 6_:.:: PGE, 68
' :::: :: i:::: :i:::: :::5 :ii::,:::5: ::.::::,::::::5:: :::::::: ::::::: :

i:!:!:i::i:!::;: :;?!i fi:i: ::.i::::i.:i:i :i:i :? i: ii ::i :' i

POE_:_I(_ I_GE, 8::5 iPGE;:851 PBE, 85
......, i :!::::: :;? :!! :: ..... :iii
:FGE, S9 'POE;: _26 FGE; 126_i PGE_ PGE, 89

i:i i. _:i.i i:i f:: : ;

PGE, 90 PGE, i6i i PG_i PGE, 126 _,:':109

:i:iii: ........ '[_ iii J ._Siiiii_:

...........= ......................... : .............................::.....................::=:::::i:i:iT:i:;i:i::i:,i:::i:i:i:=i:

;::_" :: _:_::'_ :::::::.:.: :::
. :. : _:::::::::: : :,

• i?_: !'!_ :! !'!'?

:::: :::::::u:: :. :::::::::
:::::::::::::::::::::::::::::::::::::::.... _:: ::::::::::::::::::::::::::

_G_iii_ 23, 40 i::_i_i::::_::_ii 11, 218 _!:._::i
:i:i :h:,:,: ............ :=::::.= .......................

....... x. ;;; :..:

3, 213 . ::_;{i!i]_i_iii 22, 207 !_:_._i_i_::_:::_l_:;_:'i_ :::ii:_:._:................................................,.:.....
... ,: .,:.::,:. :::.: ,., ::.: .:::.:.: .:. :_

I

6 17 [ 3 16 18 18 14

I

Indicates an erasure hits an error (GE)

RSW(8)

Figure 4.12 The reliability table for the second iteration
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i RSW(I) RSW(2) RSW(3) RSW(4) RSW(5) RSW(6) RSW(7) RSW(8)

1 PGE, lO PGE; 10

:{:

2 PGE iPGE, 18
!' _1::

3 PG_, :_9:::, PGE, 27

4 :i_Eii 66 POE, 68_

5 E, 74
: 5::

6 PGE, 83 lieGE, 8_:
: i I

7 PGE;::89:I P6E, 1it

8 PGE_ li2_:. _GE;: 1_6

: :: :: : : :!:?: :.. :.: :.:

......

_0

+ ' i!_! !:!|,_!: _ , i

................. :::::

16 _.i_:_: 1,72

#
of 6 17 3 16 27 26 14 2

Trials

Indicates an erasure hits an error (GE)

Figure 4.13 The reliability table for the third iteration

4.3.5 Results for Erasure Method 2

The statistics for Method 2 are presented in Table 4.2. The RS symbol error rate

at the output of the Viterbi decoder is given. The percentage of frame failures and RSW

failures after errors only RS decoding gives an indication how the standard concatenated

system performs. The percentage of frames failures and the percentage of RSW failures
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using Method 2 are also compiled for various valuesof Eb /N 0.

decoding trials per RSW is also given.

The number of

Table 4.2 Simulation results using Method 2 with interleaving depth I = 8

Without Erasures Using Method 2

E b / N O ,

1.7

1.75

1.8

1.85

1.9

1.95

2.0

2.05

2.1

2.15

2.2

2.3

2.4

Byte Rate

after VD

0.093

0.086

0.079

0.072

0.066

0.061

0.055

0.050

0.046

0.042

0.038

0.031

0.025

% Frames

in error

100.0

99.8

99.4

97.0

91.6

81.6

66.8

46.9

32.7

19.4

10. I

1.0

0.2

% RSW

in error

95.2

89.7

79.9

66.1

52.3

37.3

24.9

14.9

8.5

4.4

1.9

0.2

0.0

% Frames

in error

92.0

81.9

61.1

38.1

20.2

11.6

4.4

1.7

0.3

0.0

0.0

0.0

0.0

% RSW

in error

75.6

57.3

36.6

18.1

8.3

4.2

1.12

0.4

0.0

0.0

0.0

0.0

0.0

# of trials

per RSW

13.6

14.3

13.2

10.8

7.7

5.23

3.36

2.18

1.56

1.27

1.09

1.01

1.0

When the results in Table 4.2 are compared to Paaske's results, the first difference

that is noticed is the difference in the RS symbol error rate at the output of the Viterbi

decoder. The symbol error rate given in Table 4.2 is obtained using system 5 (8 = 100

and L = 64). This symbol error rate is approximately 3- 10 -3 lower than the symbol error

rate in Paaske's results. The better performance at the output of the Viterbi decoder is
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most likely due to the increased soft decision levels (L = 64) as compared to the 8 level

soft decision used by Paaske. This slightly smaller RS symbol error rate translates into

slightly better results for the errors only decoding. The frame error rate and RSW error

rate in Table 4.2 are typically 2% or 3% smaller than the results that Paaske obtained.

The results obtained using Method 2 are better than Paaske's results in three

regards. The percentage of RSWs and frames in error is lower. For example, at E b / N O

- 1.9 dB, the percentage of frames and RSWs in error using Paaske's method are 26.8%

and 16.3%, compared to 20.2% and 8.3% using Method 2. Method 2 also obtains these

results using considerably less decoding trials. Paaske's method requires an average of

112.4 decoding trials per RSW to obtain the reduction. Method 2 requires an average of

7.7 decoding trials per RSW.

improvement for lower values

The third improvement is in the ability to obtain

of E b/N 0. The results in [7] indicate that no

improvement is obtained at E b / NO= 1.8 dB. Using Method 2, the percentage of frames

in error was reduced from 99.4% to 61.1% and the percentage of RSW in error was

reduced from 79.9% to 36.6%. The average number of decoding trials per RSW needed

to accomplish this is 13.2. Error reductions were obtained for values of E b / N O as low

as 1.7 dB. Both Method 2 and Paaske's method obtained 0.3 dB gain over the system

using no erasures.

The reduction in average number of RSW trials as compared to Paaske's method

can be attributed to the ability to use erasures in the first decoding attempt. This is useful

for decoding RSW that contain more than 16 errors, as in the example in Figure 4.10.

Each RSW in the frame contains more than 16 errors. Paaske's method would obtain no
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successful decoding in the first iteration, and would have to resort to using EP4 to obtain

the first successful decoding. EP4 randomly erases two symbols and attempts decoding.

This repeats until a successful decoding or this has been attempted Tma x times. It can

easily be seen that this frame would require a large amount of decoding trials. In

addition, Paaske's method requires two successfully decoded RSW with errors in the

identical positions in order to use EP 1. Erasures declared using EP1 have a probability of

0.96 of being a GE. If not, a less reliable procedure must be used (EP2-EP4). Erasure

Method 2 only requires 1 RSW to be able to declare erasures with a probability of 0.93 of

being a GE. It can be seen that erasure Method 2 converges on the erasures quicker than

Paaske's method, and thus, requires less decoding trials per RSW.

4.4 Erasure Method 3

Method 2 can be modified to reduce the number of decoding trials per RSW by

making a few observations. In Method 1, erasures were erased two at a time until either a

decoding success was obtained, or a maximum number of erasures were declared. This

was done because symbols with low reliabilities were not guaranteed to be GE. Erasing

more than two at a time may cause the decoding capability of the code to be decreased.

This occurs if the number of BE is greater than the number of GE. In Method 2, when a

PGE is declared, it is highly probable that this is a GE (0.93). Instead of erasing two

symbols from the RT at a time, all symbols flagged as PGE are automatically erased. If,

after decoding with these symbols erased it is still not successful, then two more symbols

are erased until the maximum allowable erasures is reached.
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A second modification updates the flags after a RSW has been decoded correctly,

rather than after all of the RSW in the frame have been attempted. This allows for the

possibility for the highly reliable PGE to be declared in the first decoding pass. Both of

these modifications reduce the average number of RS decoding trials when compared to

Method 2, with very little effect on the performance. The procedure can best be

demonstrated with an example.

4.4.1 An example of erasure decoding using Erasure Method 3

Consider the deinterleaving frame in Figure 4.10. The reliability table before the

first decoding attempt is given in Figure 4.11. Much like Method 2, decoding of RSW(1)

is first attempted using erasure Method 1 (i.e. decoding is attempted using no erasures,

and decoding is repeated until either a successful decoding or a maximum number of

erasures has been reached). RSW(1) is finally decoded after 6 decoding trials and 10

erasures. In Method 2, the next step would be to attempt decoding of RSW(2) using

Method 1. Method 3 instead updates the flags immediately after RSW(1) has been

successfully decoded. This results in 13 PGE being declared in RSW(2), 12 of which are

GE. This modified reliability table is given in Figure 4.14. At this point, RSW(2) is

ready to be decoded. Instead of erasing two symbols at a time as with Method 2, all PGE

are erased and decoding is attempted. For RSW(2), this still does not yield a successful

decoding, but as can be seen from Figure 4.14, erasing two at a time would achieve the

same results, but with more decoding trials. Because the number of PGE are less than the

maximum number of erasures allowed, two more symbols are erased, and decoding is
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attempted. RSW(2) finally decodes once 16 erasures have been declared. This is

accomplished in 3 decoding trials, as compared the 17 trials needed to decode RSW(2)

using Method 2. The flags are now updated using the information provided by RSW(2),

and the resulting reliability table is given in Figure 4.15. The flags declared from

RSW(1) and RSW(2) yield 10 PGEs in RSW(3), 8 of which are GE. It should also be

noted that the PBE that were declared removed potential BE from the table. Symbols at

positions 207 and 112 would have been included in the reliability table. These would

have resulted in BE if used. The decoding of RSW(3) is accomplished by erasing the 10

PGE in the table. This resulted in a decoding success in only 1 decoding trial. The flags

are modified using the information provided by RSW(3), and the resulting reliability table

is given in Figure 4.16. There are 11 PGE in RSW(4), and all are GE. This RSW

requires all 16 erasures for a successful decoding, and is accomplished with 4 decoding

trials. The flags are updated and the resulting reliability table is shown in Figure 4.17.

There are 15 PGE in RSW(5) and 14 are GE. The codeword contains 23 errors, and

cannot be decoded with the 16 erasures in the table. This codeword will require 15 out of

16 erasures to be GE for a decoding success. Two decoding trials were attempted on this

codeword. Decoding of RSW(6) is attempted by declaring erasures at the positions where

the 9 PGE have been flagged. This does not yield a successful decoding, so erasures are

declared 2 at a time until the maximum is reached, at which point a decoding success has

not been obtained. This required 5 decoding trials. RSW(7) is successfully decoded by

erasing all 12 positions with PGE flags, and decoding. RSW(7) required only 1 decoding

trial to decode successfully. The flags are updated, and the resulting reliability table is
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given in Figure 4.18. RSW(8) contains 16 PGE, and 13 are GE. There are only 17 errors

in RSW(7), and is easily decoded in one trial by declaring 16 erasures. The flags are once

again updated and the resulting reliability table is given in Figure 4.19. Decoding of

RSW(5) is attempted a second time. New information has been provided by RSW(7) and

RSW(8). There are 17 PGE in RSW(5), and all are erased in the first decoding attempt.

In Method 3, more than 16 erasures can be declared if all are PGE. RSW(5) successfully

decodes and the updated reliability table is given in Figure 4.20. RSW(6) has 20 PGE,

with 19 of these being GE. All 20 symbols are erased, and the word is successfully

decoded. The total number of trials for this frame is 25, which corresponds to an average

number of trials per RSW of 3.13. This is significantly less than the number of trials

required for erasure Method 2 to decode the same frame. The results of the simulation are

given in Table 4.3. It can be seen from the table that a gain of 0.25 dB is obtainable.
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:.i

iili

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#
of

Trials

RSW(I) RSW(2) RSW(3) RSW(4) RSW(5) RSW(6) RSW(7) RSW(8)

PGE, 16 PGE, t6 PGE, 16 PGE, 16 PGE, 16 PGE, 58 PGE, 58

PGE, 52 PGE, 66 i _E, 66 PGE, 66 PGE, 89 PGE, 75 PGE, 75

.... ii

:::: ..:::: ::::.::...:::::::-: .-....... ::: ::x x::: ::::.::-: ::::

::_GE; _6 1, 3 i:i_i 57ii!i::i 2, 21 i:.::_2_:27 ::::_t_i, t:91: r'_I_::, l_::t:.

i:_ii ::i_ 3;_i_. i :i_!12121_:: _: ::: i:::: :[_E, : : ::i:
I

l:.::._:_:"_:i:i:i!i ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.:::::.=:i::.:.:i:::.:.:.:.:::..........................:........... .... _.:i?_!._.i:_:i!:i
!ipG_i!_6! i_i:_ii3_i'_i !ii!_!i_51ii! i 2!_iii2_ii !i_!_::i_:_i_ .... 2= t8 .................. "
:: : : :::::: ::: : _::.:: : ::::::::: :::: :::::::::_::::::::::::.::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::: t_ :_::::: :_:_:x:., i : _i.ii:_

: _ I0_: t_i _94::i ::Iitl_!:i11_);_:i:-:i:!_ii::_310_:i!i _i_:_230:i:ii 21ii:27: 2 _:i
::ii: : :-?: !:!:?][:!: i?:?:?:?i:i:i: 37:::::::

15, 141 i::::i:_i_i_::.i :: _i:i:-_/ : 2, 57 2, 57

::$: :::::5: :::::5:: : .: ::.:::::5::: :: :::::::::::::::::::::: ::::::::::::::::::::: :::::::::::::::::::::: : ::::

POE 157 i 2_i:e_l) [::::_ii [il_ :::::::::::::::::::::::::::i::l_:, i::_9_iii 126: _:21:

GK.:[_I:: ii:30::|iiS_ii:: 23 40 :.::i:::t_3¢31::::I 11 55 i::31;::i_:It_..... 6, 84
...... ::: :i: :: :::: : :5 :5::

:P_,:i_::_i; 32, 7 ii;_iiiS_::_: 11, 218 6, 84 :::_i l_i_Si::_:i

3,213 39,229 !ii:_iii_:ii1_ ' 22,207 ::':_:}[i_,iiii_!i_:![_,7,:i::25:::!" 11, 55

iii::_i6i;35::: 49,231 32, 7 30,125 ii_:.L::[::4i_ii:.l l, 55 ii_t5,24_ii::

:::::_0_:1:9_ 5I:;::17_:. 33, 61 311::.jiSi_:_ 30, 125 11, 218 18, t3

6 3

Indicates an erasure hits an error (GE)

Figure 4.14 Reliability table after RSW(1) successfully decodes
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i _,

:i

iYi ,

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#
of

Trials

RSW(1)

6

RSW(2) RSW(3) RSW(4) RSW(5) RSW(6) RSW(7) RSW(8)

PGE, 16 PGE, 16 PGE, 16 PGE, 16 PGE, 58 PGE, 58

PGE, 66 P_E, 66 _GE, 66 PGE, 89:: PGE, 75 PGE, 75

IPGE::;i7_i : .... "_...... _:' PGE, 89' _PGE;:i9z P_E_i 19:_ PGE, 194 PG_ 18_

_GE, _. PGE, 97 P'GE, 1:_ 7 I, 72 aGE, 109 PGE, l_i

_GE,ii Ii_71!i_i_; 1 li_'! 1, 72 I:, 85 PGE, 149] PGE,: i_!""ga

Pc;z, 4_: _I'GiE,194 L 85 2, t8 POE, ic_ "PGE, _9_:

• . :xPGE, 97 2, 21 :: 2.._ 1, 85 :P+6_, 2:a+0
.............................ii:i!ii:ii.iiiiiii.:..............................:.. ...L:, ,...;......... ::
"_1_ 1 l::t}iliii!i:2iiiiii!ii2_ii!ii 2, 57 PGE, 164

:.: ::.: ,:::.: :k::::: :::::::::: ::::::

l +I++:: +
++++++++:++:+++:+++++:+++++.+:+++/:+:+Y+:?:+++:++++++:+::::::+::?:+:?,+;:+."+,+;+::+:.++i++:++++++++ :+:++y+

+++_+++_3'+}++(:++_i_23_ + ++++i++2+3++++2, 2, 27:Gt_::;i:19_+1::i , 57:+::_: i:i:+l::+::!::: _:li!_ii!::ii: :i. .... ....... .....;
1,3 3+" _i5 6','16_i 'i2, t26 2, 57

::: ::::: :: : :_:::: . : ::;:!

23: 15, 141 11 55 ::::3;:23_:
..... •: ;;; ; ,;;:;,,.;.' _ !:i:::_ -: ::_:i_::.: -:.::::i:
:::: ?::::: :?::::::: ...:::.:::.::: :::::::

23, 40 ::_i_ii+li_ 11, 218 6, 84 6, 84
.+H :..:.:. :::.:::.::: ::::.:::+ ::::: :... :

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::t: :: : :.:::.:.:: " :.._. :.:.::.:.::.

_9_ _::::::ii::_ii_i!_::_i:_:22, 207 :::_!_iil03: : 7; 125+
..... • :::::::::::::::::::::::::::::: : :::::: : +:" ::_:: : ii i_:+:

I 3e; I:::8:+::++2m+]:;:+l+_++++30 ,125 '::_; t4_ 11 55 11, 55i:i ::.... ::ii i:ii:i:i:.i::::>;. :.: -.::,.i. ,, ': +:

39, 229 ii3ii,253 3i+ IS+J: 30, 125 tl,218 -I5,;.49

3 1

!I Indicates an erasure hits an error (GE)

Figure 4.15 Reliability table after RSW(2) successfully decodes
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i RSW(1)RSW(2)RSW(3)
1

2

3
4

5

6

7

8

9

10

11

12
13

14

15

16

#
of 6 3 1

Trials

RSW(4) RSW(5) RSW(6) RSW(7) RSW(8)

::gGl_ 192i :.PCE 192 ::P_E;t9_ POE, 75 PGE, 75

!_l'e_, _::9ti[ii,a::E,)_5:]iPOE, 23_iii_OE 10_:: PGE, l

i:::.i_6_:85i:.::ii_i::, t7/_i:::::::::::::::::::::::::::::::::
:i::i:i:::::i:i: .:.:. i:i :i:i:i::i:i:i:; :?: :i:i::i:i: ::::::::::::::::::::::::::::::::: :ii:: :? iii :: :|::: :;:_

..... :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: !::! |

_i:?:: : ::i::;?i :i:i::i.: i:i: :::i: :: i_ ::::::::::::::::::::::::: :: _f,::!.: : :::::::::::::::::::::::::::::::::::::::::

i::: _::i:!:! :::::::::::::::::::::::: i::i :i:|i:: -: i::::9:::?[ ::i :: :: : :::?::

:i:i :ii:i:i:::i )i:i :;i:i:; :_ii i :::::i :::: , " ::: ::

...... : :":: : ::::: m:
. .:.: : :.:.:.: :..:: < : :.:.: :.: :.: .:.:. :.: # ' :::::

i::i!_::ii::iS_:_i::i_i!i12'61::: 11 218 i::ii2,_26 _:_::_:_fi:::......
........ ::,t_ :::::::::::::::::::::::::::: :::: :::::::5:::

15, 141 i:::::3; 2_¢Jii_:::ii::i:_:_!i::_!ii:_!_6, 84 6, 84
..... ::: :::::::::::::::::::::-.:: :: :: :.:i:: :. ::_.: : :: _:::::::

23, 40 ::iiii:_i_5 ::::i[::ili_ii::iii_i::i::i[i:::.::i::_i:::::_i_i_
....... !:: i::.:: iiii:| _!i:i :i:i::i:iiii iii _iil)i:iiii:ii?: :: • .:. ::::::

===========================================================================

Indicates an erasure hits an error (GE)

Figure 4.16 Reliability table after RSW(3) successfully decodes

111



Eli

sapoaop ,qlnjssoaans (_)A_S_I aolje Olqm fil!l!qe!lO_I LI "# oJng!.q

(39) JOJJg U_ Sl!q OJnSgJO fig SOleo!pu I

1 1 E 'e I _ 9

';I d ......::" 'III 9 _Z:l-::::a_ _L I _8 'aga

• . , ::_::_ :: :. • .:::_: ::_,,:,_:::_k ::

a,, i:::: I 6_ '_aii
1 i

_fJl '_Od :601 "_Od O_E ,abel _ '_to_

:68'/I9d 68'_I9d _9I 'idOd:ii_6_:"ad9_l:
55 :"

tL '_]gd 1L '_Od 1'6I ;:JOd_{'{:g61'EOa
Z(Y

•_. H,

(8)A_S_I (L)h_S8 (9)ACS_I (!)A_S8 (I)A_S_I

Sle!.LL
jo
#

9I

fl

'el

1I

Ol

6

8

L

9

f

'e

I

1



_II

sopooop ,qlnjssooons (L)AkS_I aolje olqel ,(l!I!qe!IO_I 81 "17oang!_I

(39) aolao u_ sl!q o_nsr3o u_ sol¢o!puI

I I g E _ I [ 9

6LI 'aDd _;L '1 _::giL'i:'_

*:::': • ::i:i !: : :1:: : i:

............... :ii i i :

• iiliy, ,:.

..... tr

II1 '_IOd i_gl '_lOd Ogg _aOd
. .i :r

_9:1 ,_tod gel _aod 0_i :i_gd

OgZ '_o,!: il I !aod" _jg 'ag,_
),i . .i i : i.

_;:i_ ::r il :::: : ::::: _

i

68 '_gd 68_:aOd 99 'aOd

(_)_S_I ([)_S_I (_)_S_ (1)A_S_I

ste!.LL
jo
#

9I

"17I

II

Ol

6

8

L

9

I

1



i RSW(1) RSW(2) RSW(3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

#

of 6 3 I
Trials

RSW(4) RSW(5) RSW(6) RSW(7) RSW(8)

PGE, 66 VGE, 89
_: ill

_E, 192,pGE, 19_
,) i i , i . :. .:: :

r_E, I94 PGi_i 1_t::

...._.. ....

_G_, 83 ea_{i}*::

_]];];d;i, _??_ _ i < "

,:ili

• - : -':::::::::::. ::::: :

4 3 5 1 1

Indicates an erasure hits an error (GE)

Figure 4.19 Reliability table after RSW(8) successfully decodes
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i RSW(I)

I

2

3

4

5

6

7

8

9

l0

11

12

13

14

15

16

17

18

19

20

#

of

Trials

RSW(2) RSW(3) RSW(4) RSW(5) RSW(6)

PGE, 89

PGE, 194
i

PGE, I61

PGE, 230

PG_, 1:{ 1

PGE,: :[4_

f_e; ilSe:

r'_E, 2

:PoE 68
:iii

;_aE, 253

PaE, 57

i i,i _hi?

GEi::112

RSW(7)

6 3 1 4 3 6 1 1

RSW(8)

Figure 4.20

Indicates an erasure hits an error (GE)

Reliability table after RSW(5) successfully decodes
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Table 4.3 Simulation results using Method 3 with interleaving depth I = 8

E b / N O

1.7

1.75

Byte Rate

after VD

0.093

0.086

Without Erasures Using Method 3

% Frames

in error

94.7

83.1

% RSW

in error

78.1

% Frames % RSW

in error in error

100.0 95.2

99.8 89.7

99.4 79.9

97.O 66.1

91.6 52.3

81.6 37.3

66.8 24.9

46.9 14.9

32.7 8.5

19.4 4.4

10.1 1.9

1.0 0.2

0.2 0.0

59.2

# of trials

per RSW

9.7

8.56

1.8 0.079 64.1 37.7 6.68

1.85 0.072 42.8 20.5 4.54

1.9 0.066 23.6 9.6 3.03

1.95 0.061 13.2 4.6 2.19

2.0 0.055 6.7 1.9 1.51

2.05 0.05 2.8 0.6 1.27

2.1 0.046 0.6 0.08 1.13

2.15 0.042 0.2 0.0 1.07

0.038

0.031

2.2 0.0 0.0 1.03

0.0 0.0 1.02.3

2.4 0.025 0.0 0.0 1.0

As can bee seen comparing the results of the two methods in Tables 4.2 and 4.3,

the significant difference is the reduction in the average number of decoding trials needed

per RSW when using Method 3. The tradeoff in this reduction in the average number of

decoding trials is a slight increase in the percentage of frame and word errors using

Method 3. Method 2 outperforms Method 3 by a few percent. The BER curves for

Method 2 and Method 3 are given in Figure 4.21. Using erasure Method 2 and Method 3

resulted in approximately 0.3 dB and 0.25 dB gain respectively over the concatenated

system using no erasures.
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Chapter 5

Conclusions

Performance of the concatenated coding system through the use of RS symbol

erasures has been demonstrated. The first method investigated uses reliability

information generated by a modified Viterbi decoder. This information is derived from

the metric difference of two paths merging in each state. The reliability for the bits along

the surviving path are updated using this metric difference. This method yielded about a

0.1 dB improvement over the concatenated system using no erasures. This gain was

independent of the truncation length, interleaving depth, and number of soft decision

levels.

In the second method proposed, the reliability table is refined using information

provided by the decoded RSW in the deinterleaving 'frame. The error positions are

known in the decoded word, and the method searches for equal reliabilities in

neighboring, non-decoded RSW. If the reliabilities are the same, then symbols are

erased. This method yielded approximately 0.3 dB gain over the standard concatenated

system. The average number of decoding trials per RSW is substantially less than the

results presented by Paaske [7]. Using Method 3, the number of trials per RSW is

reduced even further. In addition, Methods 2 and 3 perform reasonably well at very low
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values of Eb/No (i.e. < 1.9 dB). The cost is the increased complexity of having to use the

SOVA in place of the standard Viterbi decoder.

It has been shown that the use of convolutional code as the inner code and a Reed

Solomon code as the outer code provide considerable gains. The rate 1/2 K = 7

convolutional code concatenated with a (255, 223) t = 16 error correcting Reed Solomon

code yielded about 8 dB gain over uncoded BPSK and approximately 9 dB with an

interleaving depth of ! = 8. The use of an interleaver with depth I = 8 gives a gain of

approximately 0.5 dB as compared to the same system using no interleaver. It has been

demonstrated that the use of a real system results in approximately a 0.3 dB loss when

compared to the ideal system using the same truncation length and number of soft

decision levels. It has been shown that a 0.15 dB improvement can be obtained by

increasing the number of soft decisions used from L = 8 to L = 64. A gain of 0.2 dB is

attainable if the truncation length in the Viterbi decoder is increased from 5 = 32 to 8 =

100. These gains were obtained regardless of the interleaving depth used.

5.1 Future Research

Erasure method 1 declares RS symbol erasures by using reliability information

provided by the SOVA. This method could be improved by using the maximum a

posterori (MAP) algorithm in place of the SOVA. The MAP algorithm is an alternate

method for decoding convolutional codes. The Viterbi decoder finds the maximum a

posterori probability for the entire path through the trellis. The MAP algorithm, on the

other hand, finds the maximum a posterori probability for each outgoing bit. The MAP
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Algorithm was designed to minimize the word error probability rather than the sequence

error probability as the Viterbi algorithm does. This algorithm is more complex than the

Viterbi, but easily provides log-likelihood (reliability) values at its output. The reliability

values generated by the MAP algorithm yield superior results when compared to the

SOVA, but is very complex. The Map algorithm could be used in place of the SOVA in

the concatenated coding system presented here.

The performance of Method 2 could also be improved upon. The special case

where GE are flagged BE, and vise versa, might be able to be detected and solved.

Several methods were tried unsuccessfully to fix the problem. Performance

improvements could be obtained by incorporating some of the elements used in Paaske's

method, such as EP1, EP3, and EP4. In Paaske's method, when the highly reliable

methods (EP1 and EP2) can not decode some of the RSW in the frame, the backup

methods are used to exhaustively try and decode, which results in a high average number

of decoding trials per RSW. But if through the use of this exhaustive search, a previously

undecodable RSW is now correctly decoded, then this RSW can possibly help in the

decoding of other non-decoded RSW in the frame. This is where a large number of

decoding trials may be justifiable. When Methods 2 and 3 fail to decode a frame, there is

no backup method that might provide improvement. The lack of a backup procedure, is

One of the reasons that the number of trials is low compared to Paaske's method. This

lack of a backup procedure is somewhat justified.

systematically guess the positions of the errors.

In Paaske's method, EP4 is used to

This guessing is effective when the

number of errors is not much larger than 18 or 19. For Methods 1 and 2, most RSW with
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18or 19errorscanbedecodedusingthe initial decodingusingMethod 1. The SOVA

outputprovidesthedecoderwith enoughusefulinformationto decodesomeof the RSW

that Paaske'smethodwould requireEP4to decode.For example,in section4.5, thereis

anexampleRSframedecodedusingMethod2. EveryRSW in the framecontainsmore

than 16errors. If Paaske'smethodwasusedto decodethis frame,thenEP4wouldhave

to be used to obtain the first decodedRSW. Using Method 2, three RSW were

successfullydecodedon the first trial, andthe otherswere successfullydecodedusing

informationprovidedby thesedecodedRSW.

Anotherpossibleimprovementis theuseof iterativedecoding.Iterativedecoding

takesthe outputof theReedSolomondecoderandfeedsthis to the input to the Viterbi

decoder.Paaske[7] usediterative decodingin his paper. If therearestill undecodable

RSW in the deinterleavingframe,the correctedcodewordsaresentback to the input to

the Viterbi decoder.The correctedbits give the Viterbi decodersomeof thestatesthat

the correctpath took. Forcingthe Viterbi decoderthroughtheseknown statesmayhelp

the Viterbi decoderin a betterestimateof thecorrectpath. The error rateat the output

will be reduced,which will result in more RSW being decodedon the secondtrial.

Iterativedecodingcouldbeusedwith Methods2 and3 presentedin this report.Thereis

the potential for larger gains using this repeatedViterbi decodingbecausethe first

iterationwill havecorrectedsomeof theRSW,andprovide thesecondViterbi trial with

additionalinformation. It shouldbenotedthatthis repeatedViterbi decodingis effective

only whentheoutputof theRSdecodercontainssomecorrectlydecodedRSW. Methods

2 and3 allow for a reductionin RSW failure for Eb/No valuesat as low as 1.7dB SNR.
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Even though the reduction at the very low values of Eb/No is not very large, this little bit

of reduction would help greatly if used in repeated Viterbi decoding trials.

The systems investigated in this report could be simulated using SPW. SPW is a

useful' tool for modeling of communication systems. Many signal processing blocks such

as filters, modulators, and channel models are contained in SPW's library for use in the

design of larger, complex systems. The SOVA and the errors and erasures RS decoder

are currently not in any of the libraries found in SPW. SPW does allow for "custom

coded blocks". This tool can take C code, and create an SPW block based on this code.

This custom coded SPW block can then be used in combination with other SPW blocks

in the design of communication systems.

The SOVA could be implemented in a single chip design. The method presented

by Hagenauer and Hoeher could be used, or another method presented in [2].
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Appendix A
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Simulation Flow Charts
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Figure A. 1 Flow chart for erasure Method 1
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Figure A.2 Flow chart•for erasure Method 2

124



I Generatedata

Convolutional
Encodedata

1
I Inter,eaveI

,L
Reed Solomon Iencode data

l
Sample/modulatedata [

,l,
I Rxfi,ter,_ataI

,l,
I Oemodu,ateI

,L
[ Deinterleave[

,L
RS decode using no
erasure method or

method 1, 2, or 3

,L

Compare to t

origional data and
count the number of

errors

Figure A.3 Flow chart for the real simulation

125



Generatedata I

ConvolutionalIEncodedata

;
Interleave [

,L
Reed Solomon [encode data

Add noise sample [
to data I
,L

Viterbi or SOVAdecode

Deinterleave

l
RS decode using no
erasure method or

method 1, 2, or 3

Compare to t"

origional data and
count the number of

errors

_1

Figure A.4 Flow chart for the ideal simulation

126



Appendix B

Program Listing

i ¸¸

B.1 Memory allocation functions

int *ivector(long nh)
{

int *v;

v = (int *)calloc(nh, sizeof(int));
return v;

void free 2d int matrix(int row, int **a)

int i;

for(i=O;i<row;i++)

free(*a);
free(a);

mt **int_matrix_2d(int row, int cot)
{

int i;

int **a;

a = (int **)calloc(row, sizeof(int *));

for(i=O;i<row;i++) {

a[i] = (int *)calloc(col, sizeof(int));
}
return a;

double **double_matrix_2d(int row, int col)
{

int i;

double **a;

a = (double **)calloc(row, sizeof(double *));

for(i=O;i<row;i++) {

a[i] = (double *)calloc(col, sizeof(double));
}
return a;

void free 2d double_matrix(int row, double **a)

{
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int i;

for(i=O;i<row;i++)
free(*a);

free(a);

double*dvector(longnh)

double*v;

v= (double*)calloc(nh,sizeof(double));
returnv;

B.2 Random number generators

double ran2(long *idum)

/* Ran2 is a long period randum number generator ( > 2* 10^18). Returns */
/* a uniform random deviate between 0.0 and 1.0. Call with idum a */

/* negative integer to initialize; thereafter, do idum between successive */

/* deviates in a sequence. This subroutine is taken from the book */

/* "Numerical recipies in C" by Saul A. Teukolsky, William T. Vetterling, */

/* and Brian P. Flannery. */

int j;

long k;
static long idum2 = 123456789;

static long iy = 0;

static long iv[NTAB];
double temp;

if (*idum <= 0)

{
if (-(*idum) < 1) *idum=l;

else *idum = -(*idum);
idum2 = (*idum);

for (j=NTAB+7; j>=0; j--)
{

k = (*idum)/IQ1;

*idum=IAl*(*idum- k*IQ1) - k*IR1;

if (*idum < 0) *idum += IM 1;

if (j < NTAB) iv[j] = *idum;

}
iy = iv[0];

}
k = (*idum)/IQ1 ;
*idum = IA l*(*idum - k*IQ 1) - k*IR 1;

if (*idum < 0) *idum += IM1;

k = idum2/IQ2;
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idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
if (idum2 < 0) idum2 += IM2;

j=iy/NDIV;
iy = iv[j] - idum2;

iv[j] = *idum;

if(iy < 1) iy += IMM1;

if ((temp = AM*iy) > RNMX) return RNMX;

else return temp;

float gasdev2(long *idum)

/* This function returns a normally distributed deviate with zero mean and unit variance */

/* This function is more computationally efficient than gasdev I because there are no trig *!
/* function calls and the funtion saves the extra deviate for the next funtion call. This */

/* subroutine is taken from the book "Numerical recipies in C" by Saul A. Teukolsky, "1
/* William T. Vetterling, and Brian P. Flannery. */

static int iset = 0;

static float gset;
float fac, rsq, vl, v2;

if(iset == 0)

{
do

{
vl = 2.0*ran2(idum) - 1.0;

v2 = 2.0*ran2(idum) - 1.0;

rsq = v 1*v I +v2*v2;

} while (rsq >= 1.0 IIrsq == 0.0);

fac = sqrt(-2.0*log(rsq)/rsq);

/* Now make the Box-Muller transformation to get two normal deviates. */
/* Return one and save the other for the next call */

gset = vl*fac;
iset = 1;

return v2*fac;

}
else

{

/* Set flag */

/* We have an extra deviate handy. Unset the flag and return it */
iset = 0;

return gset;

int bitgen(long *idum)

double a;

int bit;

a = ran2(idum);
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if (a>=0.5)
bit = 1;

else
bit =0;

returnbit;
}

?!i!

void add_noise(long *idum, double *data, double nn, double sigpow, double EbNo,

double gain)
{

inti;

double var, sd, A;

A = gain*pow(l 0.0, (EbNo/10.0));

var = sigpow*Nss/(2*A);

sd = sqrt(var);

for (i=0; i<nn; i++)

data[i] += sd*gasdev2(idum);

B.3 Filter

void filter(double *data, int M, double *h, double *x, long nn)
[

int i, j;
double sum, *x;

x = dvector(2*M+l);

for(i=0; i<=2*M; i++) x[i] = 0.0;

x[2*M-1] = data[0];
x[2*M] = data[l];

for(i=2; i<nn+2*M; i++)

{
sum = 0.0;

for(j=0; j<2*M; j++)
{

sum += x[j]*h[j];
x[j] = x[j+l];

}
x[2*M] = data[i];

data[i-2] = sum;
}
free(x);
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B.4 Modulator/Demodulator

void modulate (double *data, int *v, long N)

{

int i, j;

double A;

A = sqrt(2.0*Eb/Tb);

for(i=0;i<N;i++)

{

if(vii]==0)
{

for(j=0;j<Nss;j++)
data[i*Nss + j] = -A;

}
else

for(j=0;j<Nss;j++)

data[i*Nss + j] = A;

void demod(double *data, int *out, long N)

{

int i;

double I;

for(i=0;i<N;i++)

{

I = data[i*Nss+Nss/2 -1] + data[i*Nss+Nss/2];

if(I >= 0.0) out[i] = 1;
else out[i] = 0;

void demodsoft(double *data, int *out, long N, int **soft_metric, int Q, int a)

int i, j, level, **num_bits_per_level;

double I, b, amp, *prob;

amp = 2.0;

num_bits_per_level = int_matrix_2d(2, Q);

prob = dvector(Q);

131



for(i=O;i<2;i++)
{

for(j=0; j<Q; j++)

num_bits_per_level[i][j] = 0;

}

for(i=0;i<N;i++)

{
I = (data[i*Nss+Nss/2 - 1] + data[i*Nss+Nss/2])/2.0;

for(j=0; j<Q; j++)
if(I>=amp*(2*j-Q)/Q && I<= amp*(2*(j+l)-Q)/Q)

level = j;

if( I >= amp) level = Q- 1;

if(I <= -amp) level = 0;

num_bits_per_level[out[i]][level] += l;

out[i] = level;

for(i=0; i<Q; i++)

prob[i] = (double)(num_bits_per_level[0][i] + hum bits_per_level[ 1][Q-i- 1] + 1)/(2*N+Q);

b = -log(prob[Q- 1])/log(2.0);

for(i=O; i<Q; i++)

{
soft_metric[O][i] = (int)(floor)(a*(log(prob[i])/log(2.0) + b));
soft_metric[ 1][Q-i- 1] = soft_metric[O] [i];

}

free 2d int matrix(2, num_bits_per_level);

free(prob);

B.5 Calculate power

double calc_power(double *data, long nn)
{

int i;

double sum, P;

sum = 0.0;

for(i=O; i<nn; i++)

sum += pow(data[i], 2);

P = sum/(nn);
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returnP;
}

B.6 Interleaver and deinterleaver

void interleave(int *v, int rows, int rs_n, int rs_m, int I, int num)

{
/* rows = rs_m*rs_n, I = interleaving depth */

int ii, i, j, 1, **matrix;

matrix = int_matrix_2d(rows, I);

/* Fill matrix by column */

for (ii=0; ii<num; ii++)

{
for(i=0; i< I; i++)

for(j=0; j<rows; j++)

matrix[j][i] = v[ii*rows*I + i'rows +j];

/* Exit matrix by row */

for (i=0; i<rs_n; i++)

for(j=0; j<I; j++)
for(l=0; l<rs_m; 1++)

v[ii*rows*I + i*I*rs_m +j*rs_m + 1] = matrix[i*rs_m+l][j];

free 2d int matrix(rows, matrix);

void deinterleave(int *v, int rows, int rs_n, int rs_m, int I, int num)
{

/* rows = rs_m*rs_n, I = interleaving depth */

int ii, i, j, 1, **matrix;

matrix = int_matrix_2d(rows, I);

/* Fill matrix by row */

for (ii=0; ii<num; ii++)
{

for (i=0; i<rs_n; i++)

for(j=0; j<I; j++)
for(l=0; l<rs_m; 1++)

matrix[i*rs_m+l][j] = v[ii*rows*I + i*I*rs_m +j*rs_m + 1] ;

/* Exit matrix by column */
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for(i=O;i<I;i++)
forfj=O;j<rows;j++)

v[ii*rows*I+i'rows+j] =matrix[j][i];

free2d int matrix(rows,matrix);

B.7 Convolutional encoder and decoders

int bin2dec(int *temp, int a)
{

int i, sum;

sum = O;

for(i=O; i<a; i++)

return sum;
sum += temp[i]*pow(2, a-i-1);

void dec2bin( int *temp, int dec, int a)
{

int i, sum, c;

sum = dec;

for(i=0; i<a; i++)

{
c = pow(2, a- I-i);
if (sum >= c)

{
temp[i] = 1;

sum -= c;
}
else temp[i] = 0;

}
}

void cony_encode( int *u, int n, int k, int m, int num)

{
int ii, i,j, 1, K, trunc_length, **g, **mem, *out;

FILE *gen;

gen = fopen("kln2m6.dat","r");

K = m+l; /* The constraint length */

trunc_length = 100;

g = int_matrix_2d(n, k'K);
mem = int_matrix_2d(k, K);

out = ivector(n*num+trunc length);
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/* Obtain the generator matrix */

for(i=O; i<n; i++)

for(j=O; j<K*k; j++)

fscanf(gen, "%d", &g[il[j]);

for(ii=0; ii<num+trunc_length; ii++ )

{
/* Shift the contents of memory */

for(i=0; i<k; i++)

forfj= K-2; j>--0; j--)

mem[i][j+l] = mem[i][j];

/* Insert new bits into the encoder */

for(i=0; i<k; i++) mem[i][0] = u[ii*k + i];

/* Begin encoding process */
for(i=0; i<n; i++)

{
out[ii*n + i] = 0;

for(j=0; j<k; j++)
for(l=0; I<K; 1++)

out[ii*n + i] ^= g[i][j*K + 1] & mem[j][l];
]

for(i=0; i<n*num; i++) u[i] = out[i];

free(out);

free 2d int matrix(n, g);

free 2d int matrix(k, mem);

fclose(gen);

int conv_decode(int *v, int n, int k, int m, int num, int **soft_metric)

mt iii, ii, i, j, 1, a, 11,K;

mt starting_state, part_metric, old_state, flag;

lnt max_metric, max_state, min_metric, num_states, num_inputs;

mt **g, **mem, **path, **path_next;
mt **prev_state, **branch_out, *counter, **branch_in;

lnt *metric, *prev_metric, *out, *state;

mt *input, *new_state, *r, trunc_length;

FILE *gen;

trunc_length = 32;

K = m+l; /* The constraint length */

135



num_states=pow(2,m'k);
num_inputs--pow(2,k);

prey_state= int_matrix_2d(num_states,num_inputs);
branch_in= int_matrix_2d(num_states,num_inputs);
branchout= int_matrix_2d(num_states,numinputs);
path-_ int_matrix_2d(num_states, trunc_length);
path_next = int_matrix_2d(num_states, trunc |ength);

g = int_matrix_2d(n, k'K);
mem = int_matrix_2d(k, K);

metric = ivector(num_states);

prey_metric = ivector(num_states);
counter = ivector(num_states);

input = ivector(k);
out = ivector(k);
state = ivector(k*m);

newstate = ivector(k*K);

r = ivector(n);

gen = fopen("kln2m6.dat","r");

/* Obtain the generator matrix */

for(i=0; i<n; i++)

for(j=0; j<K*k; j++)
{

fscanf(gen, "%d", &g[i][j]);

fclose(gen);

for(i=0; i<num_states; i++) counter[i] = 0;

for(iii=0; iii< num_states; iii++)

{
for(ii=0; ii< num_inputs; ii++)

{
/* Obtain the binary representation of the state of the encoder */

dec2bin(state, iii, k'm);

/* Initialize the encoder memory to the current state */
for(ll=0; ll<k; 11++)

for(l=0; l<m; 1++)

mem[ll][l] = state[ll*m + 1];

/* Shift the contents of memory */
for(i=0; i<k; i++)

for(j= K-2; j>=0; j--)

mem[i] [i+ 1] = mem[i][j];
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/* Obtain the binary representation of the encoder input */
dec2bin(input, ii, k);

/* Insert new bits into the encoder */

for(i=0; i<k; i++) mem[i][0] = input[i];

/* Begin encoding process */
for(i=0; i<n; i++)

{
out[i] = 0;

for(j=0; j<k; j++)
for(l=0; I<K; 1++)

out[i] ^= g[i][j*K + I] & mem[j][l];
}

/* Find out the new state of the encoder */

for(ll=0; ll<k; 11++)
for(l=0; t<m; 1++)

new_state[ll*m+l] = mem[ll][1];

a = bin2dec(new_state, k'm);

prev_state[a][counter[a]] -- iii;

branch_out[a][counter[a]] = bin2dec(out,n);
branch_in[iii][ii] = a;

++counter[a];

} /* End obtaining the decoder information */

starting_state = 0;

for(i=0; i< num_states; i++) prey_metric[i] = -99;

prev_metric[starting_state] = 0;

for(iii=0; iii<num+ trunc_length; iii++)
{

/* Input the latest word */

for(i=O; i<n; i++) r[i] = v[iii*n+i];

for(i=O; i< num_states; i++)
{

metric[i] = -99;

for(j=0; j< num_inputs; j++)
{

part_metric =prev metric[prev_state[i] [j]];
for(l=0; l<n; 1++)

part_metric += soft_metric [((branch_out[i] [j] >> l)& 1)] It[n-l- 1]];

if(part_metric > metric[i])
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metric[i] = part_metric;

old_state = prev_state[i][j];

/* Now we have the old state and the metric, update the path info */

/* shift the path information */

for (1=0; 1< trunc_length -1; 1++)

path_next[i][1] = path[old_state] [1+ 1];

/* Insert the new branch input into the path */

for(l=O; l<num_inputs; 1++)
if(branch_in[old_state][l] == i)

{
path_next[i] [trunc_length- 1] = 1;

}

/* Obtain the output for this iteration if trunc_length bits have entered the buffer */

if(iii >= trunc_length- 1)

max_metric = O;

/* Determine the path with the maximum metric */

flag = O;

for(i=O; i< num_states; i++)

{
if(metric[i] > max_metric)
{

max_metric = metric[i];

max_state = i;

if(max_metric > 100000) flag = 1;

}
}

if(flag)
[

min_metric = max_metric;

for(i=O; i< num_states; i++)
{

if(metric[i] < min_metric)

{
min_metric = metric[i];

}
}
for(i=O; i<num_states; i++) metric[i] -= min_metric;

}
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/* Obtain the output from the path with the maximum metric */

for(i=O; i<k; i++) v[(iii-trunc_length+2)*k-i- 1] = ((path_next[max_state][O]>>i)& 1);

}

for(i=O; i< num_states; i++) prey metric[i] = metric[i];

for(i=0; i<num_states; i-_+)

for(j=0; j<trunc_length; j++)

path[i] [j] = path_next[i] [j];
}

free 2d int matrix(num_states, prev_state);

free 2d int matrix(num_states, branch_in);

free 2d int matrix(num_states, branch_out);

free 2d int matrix(num_states, path);

free 2d int matrix(num_states, path_next);
free 2d int matrix(n, g);
free 2d int matrix(k, mem);

free(metric);

free(prev_metric);
free(counter);

free(input);

free(state);

free(new_state);
free(r);

free(out);

return(0);

int SOVA(int *v, int n, int k, int m, int num, int **soft_metric, int al)

int iii, ii, i,j, 1, a, 11,K, sl, s2, m2;

int starting_state, part_metric[2], old_state[2], flag;

long max_metric, max_state, min_metric, num_states, num_inputs;
int **g, **mem, **path, **path_next,**prev_state;

int **branch_out, *conv_counter, **branch_in, *metric;

int *prev_metric, *out, *state, *input, *new_state, *r;
double c, delta, **L, **L_next;

int L_Q, L_max, nlevels, trunc_length;
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FILE*gen;

gen=fopenCkln2m6.dat","r");

K= m+l; /* The constraint length */

L_Q = 8;

L_max = 8;

trunc length = 32;

num_states = pow(2, m'k);

hum_inputs = pow(2,k);

nlevels = pow(2, L_Q);

g = int_matrix_2d(n, k'K);

mem = int_matrix_2d(k, K);

metric = ivector(num states);

prey_metric = ivector(num_states);
conv counter = ivector(num_states);

input = ivector(k);
out = ivector(n);

state = ivector(k*m);
newstate = ivector(k*K);

r = ivector(n);

prey_state = int_matrix_2d(num states, hum_inputs);

branch_in = int_matrix_2d(num_states, hum_inputs);

branch_out = int_matrix_2d(num_states, hum_inputs);

path = int_matrix_2d(num_states, trunc_length);

path_next = int_matrix_2d(num_states, trunc_length);
L = double_matrix_2d(num_states, trunc_length);

L_next = double_matrix_2d(num_states, trunc_length);

/* Obtain the generator matrix */

for(i=0; i<n; i++)

for(j=0; j<K*k; j++)

{

fscanf(gen, "%d", &g[i][j]);

}

fclose(gen);

num_states = pow(2, m'k);

num_inputs = pow(2, k);

c = log(2.0)/(double)(al);

for(i=0; i<num_states; i++) conv_counter[i] = 0;

for(iii=0; iii< num_states; iii++)
{

for(ii=0; ii< num_inputs; ii++)
{
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L_

/* Obtain the binary representation of the state of the encoder */
dec2bin(state, iii, k'm);

/* Initialize the encoder memory to the current state */
for(ll=0; ll<k; 11++)

for(l=0; l<m; 1++)

mem[ll][l] = state[ll*m + 1];

/* Shift the contents of memory */
for(i=0; i<k; i++)

for(j= K-2; j>=0; j--)
mem[i][j+ 1] = mem[i][j];

/* Obtain the binary representation of the encoder input */
dec2bin(input, ii, k);

/* Insert new bits into the encoder */

for(i=0; i<k; i++) mem[i][0] = input[i];

/* Begin encoding process */
for(i=0; i<n; i++)

{
out[i] = 0;

for(j=0; j<k; j++)

for(l=0; I<K; 1++)

out[i] ^= g[i][j*K + I] & mem[j][l];
}

/* Find out the new state of the encoder */

for(ll=0; ll<k; 11++)

for(l=0; l<m; 1++)

new_state[ll*m+l] = mem[ll][1];

a = bin2dec(new_state, k'm);

prev_state[a][conv_counter[a]] = iii;

branch_out[a][conv_counter[a]] = bin2dec(out,n);
branch in[iii][ii] = a;

++conv_counter[a];

} /* End obtaining the decoder information */

starting_state = 0;

for(i=0; i< num_states; i++) prev metric[i] = -99;

prev_metric[starting_state] = 0;

for(i=0; i<num_states; i++)

for(j=0;j<trunc_length; j++)
L[i][j] = 99999.0;
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for(iii=O;iii<num+trunc_length;iii,+)

/* Input the latest word */

for(i=0; i<n; i++) r[i] = v[iii*n+i];

for(i=0; i< num_states; i++)

{

metric[i] = -99;

m2 = -99;

for(j=0; j< num_inputs; j++)

{
old_state[j] =prev state[i][j];

part_metric[}] = prev_metric[old_state[}]];
for(l=0; l<n; 1++)

part_metric[j] += soft_metric[((branch_out[i] [j] >> l)& 1)] [r[n-l- 1]];

/* Determine the maximum metric and the second maximum metric */

for(j=O; j<num_inputs; j++)
{

if(partmetric[}] >= metric[i])
{

sl = old_state[j];

metric[i] = part_metric[j];

a=j;
}

}

for(j=0; j<num_inputs; j++)

{
if (j==a) continue;

if(part_metric[}] >= m2)
{

s2 = old_state[j];

m2 = part_metric[j];
]

}

/* Now we have the old state and the metric, update the path info */

/* Calculate delta */

delta = (double)c*(metric[i] - m2);

/* Update the reliability information */

for(j= 1; j<=trunc_length-m+ I ; j++)

{
if(path[sl][j] != path[s2][j])
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{
if(L[s 1] [j] >= delta)

L_next[i][j- 1] = delta;
else

L_next[i][j- 1] = L[s 1][j];
}
else

L_next[i] [j- 1] = L[s 1 ][j];

for(j=trunc_length-m+2; j<trunc_length; j++)

L_next[i][j-l] = L[sl][j];

/* shift the path information */

for (1=0; l<trunc_length- 1; 1++)

path_next[ill1] = path[s 1][1+ 1];

/* Insert the new branch input into the path */

for(l=0; l<num_inputs; 1++)

if(brancb_in[sl][l] == i)
{

path next[i][trunc_length- 1] = 1;
}

L_next[i][trunc_length- 1] = 10000.0;

/* Obtain the output for this iteration if trunc_length bits have entered the buffer */

if(L_DEBUG)

{

printf("\nReliabilities\n");

for(l=0; l<num_states; 1++)

{
printf("kn");

for(i=0; i<trunc_length; i++)
{

printf("%3.31f ", L_next[l][i]);
}

if(PAUSE) getchar0;

printf("\nbits in paths\n");

for(l=0; l<num_states; 1++)
{

printf("\n");
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for(i=O;i<trunclength;i++)

printf("%d ", path_next[l][i]);

if(PAUSE) getcharO;

}

if(iii >= trunc_length-1)

{

if((iii-trunc_length+ 1)%8 == 0)

{
max_metric = 0;

/* Determine the path with the maximum metric */

flag = 0;

for(i=0; i< num_states; i++)

[
if(metric[i] > max_metric)
{

max_metric = metric[i];
max_state = i;

if(max_metric > 1000000) flag = 1 ;
}

}

if(flag)

{
min_metric = max_metric;

for(i=0; i< num_states; i++)

{
if(metric[i] < min_metric)
[

min_metric = metric[i];

}
}
for(i=0; i<num_states; i++) metric[i] -= min_metric;

}

/* Obtain the output from the path with the maximum metric */

for(j=0; j<8; j++)
{

for(i=l; i<= nlevels; i++)

{
if((L_next[max_state][j] >= (double)(i*L_max/nlevels)) &&

(L_next[max_state]U] < (double)((i+ l)*L_max)/nlevels))

if(path_next[max_statel[j] == 1) v[iii-trunc_length+l+j] = i;
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elsev[iii-trunc_length+.l+j]= -i;

break;

}
}
if(L_next[max_state][j] > L_max)
{

if(path_next[max_state][j] == 1) v[iii-trunc tength+l+j] = nlevels;
else v[iii-trunc_length+l+j] = -nlevels;

}

if(L_next[max_state][j] < L_max/nlevels)

{
if(path_next[max_statel[j] == 1) v[iii-trunc_length+ 1+j] = 1;
else v[iii-trunc_length+ 1+j] = - 1;

}

for(i=O; i< num_states; i++) prev_metric[i] = metric[i];

for(i=O; i<num states; i++)

for(j=O; j<trunc length; j++)
{

path[i][j] = path_next[i][j];

L[i][j] = L_next[i][j];
}

}

free(metric);

free(prev_metric);
free(conv_counter);

free(input);
free(out);

free(state);
free(new_state);

free(r);

free 2d int matrix(n, g);

free 2d int matrix(k, mem);

free 2d int_matrix(num_states, prev state);

free 2d int matrix(num_states, branch_in);

free_2d_int_matrix(num_states, branch_out);

free 2d int matrix(num_states, path);

free 2d int matrix(num_states, path_next);

free 2d double_matrix(hum_states, L);

free 2d double_matrix(num_states, L_next);

return(O);
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B.8 Reed Solomon encoders and decoders

void make GF table(int m, int *GF_table, int *dec_table, int GF_poly)

/*

/*
/*

/*

/*

/*

/*
/*

/*

/*

/*
/*

/*

/*
/*

/*
/*

/*

/*

/*

/*

/*
/*

/*

/*
/*

/*

/*
/*

/*

/*

/*

/*

/*
/*

/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

/*
/*

/*

This procedure generates the Galois Field GF(2^m). Information */

is stored in two lookup tables (dec_table and GF_table). */
*/

GF_table[i] = base ten number, where 'i' is the power of alpha */

dec_table[i] = power of alpha, where T is the base ten repersentation. */
*/

For Example: In GF(16) */
*/

a^6 = 00 t 1 = 3 (Base ten, decimal equivalent) */
*/

is the same as */

*/

GF_talble[6] = 3 or dec_table[3] = 6 */
*/

These two tables are used to transform a number back and fourth */

between the two representations (GF and decimal). */

This is done in order to perform Galois Field arithmatic. When */

adding, it is easier to use the decimal representation, because adding */
two numbers, a and b, is aAb, where '^' is exclusive-or. */

If a and b were in GF powers of alpha representation, then adding */
the two numbers becomes: */

GF_table[a] ^ GF_table[b] = c

*/

*/

*/

*/

*/
*/

Multiplying two numbers is easier to use the powers of alpha
representation. For example, in GF(16)

alpha^4 x alpha^5 = alpha^9

Multiplication is acheived by simply adding the powers of alpha (4+5)*/

This addition is modulus q-I. */

alpha^14 x alpha^7 = alpha^21 mod (15) = alpha^7 */

Due to the fact that the element zero is not represented in the */

GF_table because in the powers of alpha representation, 0 is actually */
equal to alpha^0 = 1. So the GF representation for the element 0 is - 1 */

Care has to be taken When multiplying two elements. The multiplying */

can only take place if a or b is not equal to - 1. Else the result is equal */
to zero. So dectable[0] = -1, but GF_table[-1] does not equal */

zero. This returns an error because indixes of arrays can not have
negative values.

GF_poly is the irriducable (or primitave) polynomial that is used to

generate the field. For example, for m = 4, the irriducable

polynomial is:

X^4 + X +1=0 or X^4 = X+I = 1100 = 12

*/

*/
*/

*/

*/

*/

*/

*/

*]

*/
*/

The X^4 = 12 is the way GF_poly is stored. The field is created by

repeated right shifts (multiplication by alpha). If a '1' is right shifted
from the right most position (corresponding to alpha^3), we will have */

alpha^4. But alpha^4 is equal to alpha + 1 ( 1100 = 12), so 12 is */
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/* 'x-or' ed with the result. */

i

/

int i, q;

GF_table[0] = pow(2, (m-1));

q = pow(2, m);

for( i=l; i<q-1; i++)

if (GF_table[i- 1] & 1 == 1)

{
GF table[i] = GF_table[i- 1] >> 1;

GF_table[i] = GF_table[i] ^ GF_poly;
)
else GF_table[i] = GF_table[i- 1] >> 1 ;

}

for(i=O; i<q-1; i++) dec_table[GF_table[i]] = i;
dec_table[O] = - 1;

void rs_encode (int *data, int n, int k, int m, int num)

/*

/*

/*

/*

/*
/*

/*

/*

/*

/*
/*

/*

/*

/*

/*

The following procedure encodes a data vector using a Reed Solomon */
code. The parameters are defined as follows: */

m = number of data bits per symbol

q = 2Am specifies the field GF(q) = GF(2^m)

n = q- 1 the block length
t = maximum number of errors that can be corrected

k = n - 2*t the number of information bits per block
num= the total number of blocks to be encoded

data = the uncoded data vector

*/
*/

*/

*/

*/
*/

*/

*/
*/

*/The field is first generated by calling the procedure 'make GF t'ab'le'.

Then the systematic encoding is accomplished by using feedback shift */

registers to generate the parity symbols. The connections are specified */

by the generator polynomial g[]. */

int GF_poly[ I 1] = {0,0,0,6,12,20,48,72,184,272,576 };

int i, ii, j, 1, cl, t, sum;
int *u, *vv, *g, *datal, *GF_table, *dec_table;

t= (n-k)/2;

GF_table = ivector(n+ I);

dec_table = ivector(n+l);

g = ivector(n-k+ 1);
u = ivector(k);

vv = ivector(n);

datal = ivector(n*m*num);
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make_GF_table(m,GF_table,dec_table,GF_poly[m]);

for(i=O;i<=n-k;i++)g[i]= 0;

g[0]= GF_table[1];
g[1]=GF_table[0];

/* Create the generator polynomial g(X) */
for (i=2; i<= n-k; i++)

{
g[i] = GF_table[0];

for (j=i- 1; j>O; j--)
if (g[j] != 0) g[j] = g[j-l] ^ GF_table[ (dec_table[g[j]] + i) % n];

else g[j] = g[j_l];

g[0] = GF_table[ (dec_table[g[0]] + i) % hi;

}

/* Change g to GF representation */

for(i=0; i<= n-k; i++) g[i] = dec_table[g[i]];

for (ii = O; ii <num; ii++)

{
for(j = 0; j < k; j++)
{

u[j] =o;
for (1 = 0; 1< m; 1++)

u[j] += data[ii*k*m + j*m +l]*pow(2, m-1-1);
}
for (i=O; i< n-k; i++) vv[i] = 0;

for (i=k-1; i>=O; i--)

{
c 1 = dec_table[u[i]^vv[2*t- 1 ]];

if(cl !=-1)

{
for(j=2*t-1; j>0; j--)

if (g[j] !=- 1) vv[j] = vv[j- 1]^GF_table[(g[j]+c 1)%n];
else vv[j] = vv[j-1];

vv[O] = GF_table[(g[0] + c 1)%n];
}
else

{

for (j= n-k-l; j>0; j--)
vv[j] = vv[j-1];

vv[0] = 0;
}

}
for(i=0; i<k; i++) vv[i+n-k] = u[i];

for(i=O; i<n; i++)

{
sum = vv[i];

for (j=0; j<m; j++)

{
cl = pow(2, m-j-l);
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)
}

}

if (sum >= c 1)
(

datal [ii*n*m + i*m +j] = 1;
sum -= c 1;

}
else datal [ii*n*m + i*m +j] = 0;

for (i=0; i<n*m*num; i++) data[i] = datal [i];

free(datal);

free(GF_table);

free(dec_table);
free(w);

free(g);

free(u);

void rs_decode(int *data, int *counter, int n, int k, int q, int m, int num)

[:_

/*

/*
/*

/*

/*

/*
/*

/*

/*
/*

/*

/*

/*
/*

/*

/*

/*

/*

/*

The following procedure decodes a Reed Solomon encoded data
vector. This RS decoder has been modified to handle erasures. An

erased position is denoted '-2'. The code can correct e errors and f

erasures if 2*e + f <= dmin where dmin is equal to n - k or 2*t.
The parameters are defined as follows:

m = number of data bits per symbol

q = 2^m specifies the field GF(q) = GF(2^m)
n = q-1 the block length
t = maximum number of errors that can be corrected

k = n - 2*t the number of information bits per block
num= the total number of blocks to be encoded

data = the uncoded data vector

lambda = The error locator polynomial

S = The syndrome polynomial

*/

*/

*/

*/

*/
*/

*/

*/
*/

*/

*/
*/

*/

*/

*/

*/

The decoding is done using the Berlekamp-Massey algorithm. Details */

of the algorithm can be found in "Theory and Practice of Error Control */

Codes" by Richard E. Blahut. This procedure can handle non-erasure */
decoding also. */

int GF_poly[11] = {0,0,0,6,12,20,48,72,184,272,576};

int i, ii, j, 1, t, rr, sum, L, cl, deg_lambda, num_erasure, delta_r;

int erasure, error, decode_flag, num_errors, numer, den;

int *GF_table, *dec_table, *r, *U, *S, *lambda, *omega;
int *B, *T, *tmp, *beta;

t = (n-k)/2;
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GF_table= ivector(q);
dec_table= ivector(q);
beta=ivector(n);
r =ivector(n);
U=ivector(n);
S=ivector(n);
T --ivector(n);
B= ivector(n);
tmp= ivector(n);
lambda= ivector(n);
omega= ivector(2*t+1);

/* Create GF(2^m) field */

make GF table (m, GF_table, dec_table, GF_poly[m]);

for (ii = 0; ii <num; ii ++)

{

decode_flag = 0;
num_erasure = O;

for(j = 0; j < n; j++)

{
r[j] = O;
sum = O;

erasure = O;

for (l = O; 1< m; l++)

{
if (data[ii*n*m +j*m +l] == -2) /* Erased bit */

{
U[num_erasure] = j;
if (erasure == O)

{
num_erasure++;
erasure = l;

}

r[j] = -1;

data[ii*n*m + j*m +1] = 0;
break;

}
else sum += data[ii*n*m + j*m +l]*pow(2, m-l-l);

}
if(r[j] != -1) r[j] = dec_table[sum];

}
error = 0;

/* Compute the syndrome */

for(i=1; i<= n-k; i++)

{
S[i] = O;

for(j=O; j<n; j++)

if(rEj] !=-1)

S[i] A= GF_table[ if[j] + i'j) % n];
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if (S[i]!=0) error= 1;/* If nonzerosyndrome,thereisanerror*/
}
s[0] = 0;

/* Convert to GF representation */
for(i=l; i<=n-k; i++) S[i] = dec table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */
{

for(i=0; i < n; i++)

{
lambda[i] = 0;

B[i] = -1;

T[i] = O;

}

lambda[O] = GF_table[0];
L=0;

deg_lambda = 0;

B[0] =0; /* = 1 */

/* =1 */

for(rr=l; rr <= 2*t; rr++)

{
if (rr <= hum erasure)
{

for (i=l; i <= deg_lambda+l; i++)
{

if (lambda[i-l] != 0)

tmp[i] = GF_table[ (U[rr-1] + dec_table[ lambda[i-l] ] ) % n];

else tmp[i] = 0;
}

for (j= 1 ; j <= deg_lambda+ I; j++) lambda[j] ^= tmp[j];
deg_lambda++;

for(j=0; j<= deg_lambda; j++) B[j] = dec_table[lambda[j]];
L ++;

}

else

{

/* Compute the discrepancy */
delta_r = 0;

for(j=0; j<=rr; j++)

if (lambda[j] != 0 && S[rr-j] !=-I)

delta_r ^= GF_table[ (dec_table[lambda[j]] + S[rr-j]) % n];
delta_r = dec_table[delta_r];

if (delta_r != -1)

{

/* T(x) <--- lambda(x) + delta_r * x * B(x) */

for (j=l ; j <= deg_lambda +1; j++)

if (B[j-1] !=-1)

T[j] = lambda[j] ^GF_table[ (delta_r + B[j-I]) % n];
T[0] = lambda[0];
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++deg_lambda;

if (2*L<=rr +num_erasure-l)
{

L = rr - L + hum_erasure;

/* B(x)<--- B(x)/ delta_r */

for(j=0; j<= deg_lambda; j++)

if( lambda[i] != O)

B[j] = (n-delta_r + dec_table[lambda[j]]) % n ;
else B[j] =-1;

/* lambda(x) < .... T(x) */

for(j=0; j<=deg_lambda+ 1; j++) lambda[j] = T[j];

]
else

{
/* lambda(x) < .... T(x) */

for(j=O; j<n-k; j++) lambda[j] = T[j];

/* B(x) < ..... x* B(x) */

tmp[0] = - 1;

for(j=l; j<=n-k; j++) tmp[j] = B[j-I];

for(j=O;j<=n-k;j++) B[j] = tmp[j];

else

{
/* B(x) < ..... x* B(x) */

tmp[0] = - 1 ;

for(j=l;j<=n-k;j++) tmp[j] = B_-I];

for(j=0;j<=n-k;j++) B[j] = tmp[j];
}

/* Change lambda(x) to GF representation */
for(i--O; i<n; i++) lambda[i] = dec_table[lambda[i]];

/* Compute the degree of lambda(x) */

deg_lambda = n;
for(i=n- 1; i>=0; i--)

if (lambda[i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the capacity of the code */
{

/* Comupte omega(X) = [I+S(X)] * lambda(X) */

for(i=0; i<=n-k; i++) omega[i] = 0;
for (i=0; i<=n-k; i++)

{
for (j=0; j<=n-k; j++)
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if ((i+j) >= n-k+l) continue;

if (S[i] != -1 && lambda[j] != -1)

omega[i+j] ^= GF_table[ (S[i] + lambda[j]) % n ];

/* Convert omega(x) to GF representation */

for (i=0; i<=n-k; i++) omega[i] = dec_table[omega[i]];

/* Find the roots of lambda(X). The inverses of the roots gives us the */
/* location of the errors. */

num_errors = O;

for (i=O; i<q-1; i++)
{

sum = O;

for (j=O; j<2*t; j++)
if (lambda[j] != - 1)

sum ^= GF_table[ (lambda[j] + i'j) % (q-l) ];
if (sum == O)

{
beta[num_errors] = (n-i)%n;
num_errors++;

}
}

if( (2*(num errors-num_erasure) + num_erasure) <= 2*0

{
if (num_errors == deg_lambda)
{

/* Convert r to base 10 representation */

for(i=O; i<n; i++)

if (r[i] != - 1) r[i] = GF_table[r[i]];

else r[i] = 0;

/* Calculate the error values and correct the received vector */

for (i=0; i<num_errors; i++)

{
/* Calculate the denominator */

den = O;

for (.j=0; j<=2*t; j++)

{
if (j%2 == 0) continue;

if (lambda[j] != -1)
{

cl = GF_table[ ((q-l-beta[i])*(j-1) + lambda[j]) % n ];
den ^= c 1 ;

}
}
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den= dec_table[den];

/* Calculate the numerator */

numer = 0;

for (j=O; j<--2*t; j++)

if (omega[j] != -1) numer ^= GF_table[ ((q-l-beta[i])*j + omega[j])%n ];

numer = dec_table[numer];

/* Correct the erroneous value */

if(numer != - 1)

r[beta[i]] ^= GF_table[ (n + numer + beta[i] - den) % n];

/* Change r back into the GF representation */

for(i=0; i<n; i++) r[i]= dec_table[rill];

} /* end if (num_errors == deg_lambda) */
else

{
decode_flag = I;
counter[3] += 1;

/*printf("\n3");
*/

}
} /* end if (num_erasure +num errors <= dmin) */
else

{
decode_flag = 1;

counter[2] += 1;

/*printf("\n2");
*/

}
} /* end if (deg_lambda <= 2*t)
else

{
decode_flag = 1;

counter[l] += 1;

/*printf('%n 1");
*/

*/

}
} /* end if (error) */
else

{
decode_flag = O;
counter[O] += 1;

/*printf("\n 1");
*/

}
if (decode_flag)
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{
counter[5] += 1;

/*printf("\n5");
*/

for(j=O; j<k; j++)

{
for(l=0; l<m; 1++)

data[ii*k*m + j*m + 1] = data[ii*n*m + (n-k+j)*m + 1];
}

}
else

{
counter[4] += 1;

/*printfC\n4");
*/

for(j=0 ; j<k; j++)
{

if (r[n-k+j] == -1) sum = 0;

else sum = GF_table[r[n-k+j]];
for (1=0; l<m; 1++)

{
cl = pow(2, m-l-l);

if (sum >= c 1)
{

data [ii*k*m +j*m + 1] = 1;
sum -= c 1 ;

}
else data [ii*k*m +j*m + 1] = 0;

}
}

free(GF table);

free(dec_table);
free(beta);

free(r);

free(U);

free(S);

free(T);
free(B);

free(tmp);
free(lambda);

free(omega);

}

void rs_decode_erasure_method_l(int *data, int n, int k, int q, int m, int num,
int *erasure_counter, int *counter)

/* The Reed Solomon deocder is modified to use erasure Method 1. This is to be */
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/* used with the SOVA. The bit reliabilities are first converted into symbol */

/* reliabilities. A table of the least reliabile symbols are compiled for each */

/* codeword. Decoding is attempted using no erasures. If successful, decoding */

/* stops. If unsuccessful, then decoding is reattemped using 2 erasures. For each */
/* unsuccessful decoding trial, two more erasures are added until either a */

/* successful decoding takes place, or a maximum number of erasures has been */

/* reached (16 for this simulation) */

int GF_poly[ 11 ] = {0,0,0,6,12,20,48,72,184,272,576 };

int i, ii, j, 1, t, rr, sum, L, c 1, deg_lambda, delta_r;

int error, decode_flag, num_errors, numer, den;

int num erasures, temp, max_eras, *reliability;
int *GF_table, *dec_table, *r, *U, *S;

int *lambda, *omega, *B, *T, *tmp, *beta, *min;

t = (n-k)/2;

max_eras = t;

GF_table = ivector(n+ 1);

dec_table = ivector(n+ 1);
beta = ivector(n);

r = ivector(n);

U = ivector(2*t);
S = ivector(n);

T = ivector(n);

B = ivector(n);

tmp = ivector(n);
lambda = ivector(n);

omega = ivector(2*t+l);

reliability = ivector(n);

min = ivector(2*t);

/* Create GF(2^m) field */

make GF table (m, GF_table, dec_table, GF_poly[m]);

for (ii = 0_,ii <num; ii ++)

{

for(j = 0; j < n; j++)
{

r[j] = 0;

reliability[j] = 500;

sum = 0;

for (1 = 0; 1< m; 1++)

{
if( reliability[j] > abs(data[ii*n*m + j*m +1]))

reliability[j] = abs(data[ii*n*m + j*m +1]);

if(data[ii*n*m +j*m +1] <= O)
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data[ii*n*m+j*m +1]--O;
else
data[ii*n*m+j*m +1]= l;

sum+=data[ii*n*m+j*m +l]*pow(2,m-1-1);

r[j] =dec_table[sum];

/* Find the minimum reliabilities */

for(i=0; i<max_eras; i++)

{
min[i] = reliability[i];
U[i] = i;

}

/* Do the initial sorting. Place the minimum in min[0] and the */

/* maximum in min[max_eras - 1] */

for(i=O; i<max_eras; i++)

{
for(j=O; j<max_eras - 1; j++)

if(min[j] > min[j+l])
[

temp = min[j];
min[j] = min[j+l];

min[j+l] = temp;

temp = U[j];

u[j] = u[i+ll;
U[j+I] = temp;

}

}

for(i=max_eras; i<n; i++)
{

if(reliability[i] < min[max eras - 1])

[
min[max_eras- 1] = reliability[i];

U[max_eras- 1] = i;

for(j=max_eras- 1; j>= 1; j--)

{
if(min[j] < min[j-1])
{

temp = min[j];

min[j] = min[j-l];

min[j-l] = temp;

temp = U[j];

U[j] = U[j-1];

U[j-1] = temp;

}
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elsebreak;

}
}

/* The symbols with the minimum reliabilities are in positions */

/* U[O] ... U[num_erasures-1]. These symbols will be erased. */

/* Set these symbols equal to 0 before computing the syndrome */

decode_flag = 1;

for(num_erasures=0; num_erasures <= max_eras; num_erasures +=2)
{

iffdecode_flag)

{

for(i=0; i<num_erasures; i++) r[U[i]] =-1; /* =0 */

error = 0;

/* Compute the syndrome */

for(i=l; i<= n-k; i++)

{
S[i] = 0;

for(j=0; j<n; j++)

if(r[j] !=-1)

S[i] ^= GF_table[ (r[j] + i'j) % n];
if (S[i] != 0) error = I ;/* If nonzero syndrome, there is an error*/

I
s[o] = o;

/* Convert to GF representation */
for(i=l; i<=n-k; i++) S[i] = dec_table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */

{
for(i=0; i < n; i++)

{
lambda[i] = 0;
B[i] = -1;

T[i] = 0;

}

lambda[0] = GF_table[0];
L=0;

deg_lambda = 0;

B[0] =0; /* = 1 */

for(rr=l; rr <= 2*t; rr++)

{
if (rr <= hum_erasures)

/* =1 */
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for(i=1; i <=deg_lambda+1;i++)
{

if (lambda[i- 1] != O)

trap[i] = GF table[(U[rr-l]+dec table[lambda[i- l]])%n];

else tmp[i] = O;

}
for (j=l;j <= deg_lambda+l;j++) lambda[j] ^= tmp[j];

deg_lambda++;

for(j=O; j<= deg_lambda; j++) B[j] = dec tab!e[lambda[j]];

L ++;

else

{
/* Compute the discrepancy */
delta_r = O;

for(j=O; j<=rr; j++)

if (lambda[j] != 0 && S[rr-j] != -1)
delta_r ^= GF_table[(dec_table[lambda[jl]+S[rr-j])%n];

delta_r = dec_table[delta_r];

if (delta_r != - 1)
{

/* T(x) <--- lambda(x) + delta_r * x * B(x) */

for (j=l; j <= deg_lambda +1; j++)

if (B[j-I] !=-1)

T[j] = lambda[j] ^GF table[ (delta_r + B[j-11) % n];
T[0] = lambda[0];

++deg_lambda;

if (2*L <= rr + num_erasures-1)

{
L = rr - L + num_erasures;

/* B(x)<--- B(x)/ delta_r */

for(j=0; j<= deg_lambda; j++)
if( lambda[j] != 0)

B[j] = (n-delta_r+dec_table[lambda[j]])%n;

else B[j] =-1;

/* lambda(x) < .... T(x) */

for(j=0; j<=deg_lambda+ 1; j++) lambda[j] = T[j];

}
else

{
/* lambda(x)< .... T(x) */

for(j=0; j<n-k; j++) lambda[j] = T[j];

/* B(x) < ..... x * B(x) */

tmp[0] = - 1;

for(j=l; j<=n-k; j++) tmp[j] = B[j- 11;

for(j=0; j<=n-k; j++) B[j] = tmp[j];
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}
}

else

{
/* B(x) < ..... x* B(x) */

tmp[O] = - 1;

for(j=l;j<=n-k;j++) trap[j] = B[j-1];

for(j=O; j<=n-k; j++) B[j] = tmp[j];

}

/* Change lambda(x) to GF representation */
for(i=O; i<n; i++) lambda[i] = dec_table[lambda[i]];

/* Compute the degree of lambda(x) */

deg_lambda = n;

for(i=n- 1; i>=O; i--)

if (lambda[i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the Capacity of the code */

{

/* Comupte omega(X) = [I+S(X)] * lambda(X) */

for(i=O; i<=n-k; i++) omega[i] = 0;
for (i=0; i<=n-k; i++)

{
for (j=0; j<=n-k; j++)
{

if ((i+j) >= n-k+l) continue;

if (S[i] !=-1 && lambda[j] !=-1)

omega[i+j] ^= GF_table[ (S[i] + lambda[j]) % n ];
}

}

/* Convert omega(x) to GF representation */

for (i=0; i<=n-k; i++) omega[i] = dec_table[omega[i]];

/* Find the roots of lambda(X). The inverses of the roots gives us the */
/* location of the errors. */

num_errors = 0;

for (i=O; i<q- I; i++)

{
sum = 0;

for (j=0; j<2*t; j++)
if (lambda[j] != - 1)

sum ^= GF_table[ (lambda[j] + i'j) % (q-l) ];
if (sum == 0)

{
beta[num_errors] = (n-i)%n;

num_errors++;

}
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if((2*(num_errors-num_erasures) + num-erasures) <= 2*t)

{

if (num_errors == deg_lambda)

[

/* Correct Decoding. record the umber of erasures required */

erasure_counter[num_erasures] += 1;

decode_flag = 0;

/* Convert r to base l0 representation */

for(i=0; i<n; i++)

if (r[i] != -1) r[i] = GF_table[r[i]];
else r[i]= O;

/* Calculate the error values and correct the received vector */

for (i=0; i<num_errors; i++)
{

/* Calculate the denominator */

den = 0;

for (j=O; j<=2*t; j++)
{

if (j%2 == 0) continue;

if (lambda[j] != - 1)
{

cl = GF_table[ ((q-l-beta[i])*(j-1) + lambda[j]) % n ];
den ^= c 1;

}

}

den = dec_table[den];

/* Calculate the numerator */

numer = 0;

for (j=0; j<=2*t; j++)

if (omega[j] != - 1) numer ^= GF_table[ ((q- l-beta[i])*j + omega[j])%n ];

numer = dec_table[numer];

/* Correct the erroneous value */

if(numer != - 1)

r[beta[i]] ^= GF_table[(n+numer+beta[i]-den)%n];

/* Change r back into the GF representation */

for(i=O; i<n; i++) r[i] = dec_table[r[i]];
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} /* end if (num_errors == deg_lambda) */
else

{
decode_flag = 1 ;
if(num_erasures == max_eras) counter[3] += 1;

} /* end if (num_erasures +num errors <= dmin) */
else

[
decode_flag = 1;

if(num_erasures == max_eras) counter[2] += 1;

/* end if (deg_lambda <= 2*t) */
else

{
decode_flag = 1 ;

if(num_erasures == max_eras) counter[ 1] += 1 ;
}

} /* end if(error) */
else

{
erasure_counter[num_erasures] += 1;

decode_flag = 0;

counter[O] += 1;
}

} /* end if decode flag */
} /* end for num_erasures = 0 to max_eras */

if (decode_flag)
{

/* Incorrect decoding. */

counter[5] += 1;

for(j=O; j<k; j++)
{

for(l=O; l<m; 1++)

data[ii*k*m + j*m + 1] = data[ii*n*m + (n-k+j)*m + 1];

}
else

counter[4] += 1;

/* Correct decoding */

for(j=0 ; j<k; j++)
{

if (r[n-k+j] == -1) sum = 0;

else sum = GF table[r[n-k+j]];
for (1=0; l<m; 1++)
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cl = pow(2,m-l-l);
if(sum>=cl)
{

data [ii*k*m + j*m + 1] = 1;

sum -= c 1;

}
else data [ii*k*m +j*m + 1] = 0;

free(GF_table);

free(dec_table);

free(reliability);

free(min);
free(beta);

free(r);

free(U);

free(S);
free(T);

free(B);

free(tmp);
free(lambda);

free(omega);
}

void rs_decode_erasure_method_2(int *data, int *v2, int *counter, int n, int k, int q, int m, int num,
int *erasure_counter, int I, int *decoded_word,

int *frame failure, int *error_stat 1, int *error_stat2)

/* Reed Solomon decoding is performed using erasure method 2. In this method, the deinterleaving */

/* frame is reconstructed. Decoding of each RSW is initially attempted using erasure method 1. */

/* The flags for each undecoded RSW are updated using information provided by the successfully */
/* decoded RSW in the frame. */

{
int GF_poly[ 11] = {0,0,0,6,12,20,48,72,184,272,576 };

int i, ii, j, 1, 11,t, rr, sum, sum2, L, c 1, deg_lambda, delta_r;

int error, decode_flag, num_errors, numer, den, I_flag;
int num_erasures, temp, maxeras, max_eras 1, cc, failure, he;

int *r, *r2, *U, *S, *lambda, *omega, *B, *T, *tmp, *beta;

struct mat **RSM;

int j j, kk, reli, GEBE, offset, GE_count, r_count, max_iter, id, id 1;

int *GF_table, *dec_table;

GF_table = ivector(n+ 1);

dec_table = ivector(n+ 1);

t = (n-k)/2;
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beta= ivector(n);
r =ivector(n);
r2= ivector(n);

U=ivector(2*t);
S=ivector(n);
T=ivector(n);
B= i_ector(n);
tmp= ivector(n);
lambda= ivector(n);
omega= ivector(2*t+l);
counter=ivector(20);

max_erasl= 16;
max_iter=I;

/* Create GF(2^m) field */

make GF table (m, GF_table, dec_table, GF_poly[m]);

RSM = (struct mat **)calloc(n_'m, sizeof(struct mat *));

for(i=0;i<n*m;i++)
{

RSM[i] = (struct mat *)calloc(I, sizeof(struct mat));

}

for (ii = 0; ii < num/I; ii ++)

{

/* Enter the data into the matrix */

counter[13] ++; /* Total number of frames */

I flag = 0;

for(i=0; i<I; i++)

(
id = 0;

decoded_word[i] = 0;
ne = 0;

counter[0]++; /* number of RSW */

for(j = 0; j < n; j++)
{

RSM[j][i].r = 0;

RSM[_][i].r2 = 0;

RSM[j][i].reli = 500;

RSM[j][i].flag = 0;
sum = 0;

sum2 = 0;

for (1 = 0; 1< m; 1++)

{
if( RSM[j][i].reli > abs(data[ii*I*n*m + i*n*m +j*m +1]))

RSM[i][i].reli = abs(data[ii*I*n*m + i*n*m + j*m +1]);
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if(data[ii*I*n*m+ i*n*m +j*m +1] <= 0)

data[ii*I*n*m + i*n*m +j*m +1] = 0;
else

data[ii*I*n*m + i*n*m +j*m +1] = 1;

sum += data[ii*I*n*m + i*n*m + j*m +l]*pow(2, m-l-l);

sum2 += v2[ii*I*n*m + i*n;_m + j*m +l]*pow(2, m-1-t);
}
RSM[j][i].r = dec_table[sum];

RSM[j][i].r2 = dec_table[sum2];

++counter[11]; /* Total number of bytes */

if(sum != sum2)

{
++ne;

counter[12] ++; /* Number of byte errors */
}

}
if(ne >32) ne = 32;

if(he <=16) ne = 16;

else I_flag = 1;

++ error_stat 1 [ne- 16];
}

if(I_flag) counter[14] ++; /* Number of frame errors */

f ' ,,

/* If GEN_STAT = 1, then the probability of flagging a BE given a GE */
/* and the probability of flagging a GE given a BE */

if(GEN_STAT)

{
for(i=0; i<I; i++)
{
for(j=0; j<n; j++)
{

reli = RSM[j][i].reli;

if(reli >= 255) continue;

if(RSM[j][i].r == RSM[j][i].r2) GEBE = 2;

else GEBE = 1;

kk =j;
offset = 0;

/* loop forward looking for identical reliabilities */

for(l=0; 1<I; 1++)

{
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if(i+l>=! && kk == n-1) break;
if(i+l>=I)

{
kk =j+l;

offset = I;

if(RSM[kk] [i+l-offset].reli == reli)

if(GEBE == 1)

{
counter[6]++;

if(RSM[kk][i+l-offset].r == RSM[kk][i+l-offset].r2)
counter[5]++;

else counter[4]++;

)
if(GEBE == 2)

{
counter[9]++;

if(RSM[kk][i+l-offset].r == RSM[kk] [i+t-offset] .r2)

counter[7]++;
else counter[8]++;

else break;

}

/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(l=0; 1<I; 1++)
{

if(i-I < 0 && kk == 0) break;

if(i-I < 0)

{
kk =j-l;
offset = I;

}
if(RSM[kk] [i-l+offset].reli == reli)
{

if(GEBE == 1)

{
counter[6]++;

if(RSM[kk][i-l+offset].r == RSM[kk][i-l+offset].r2)
counter[5]++;

else counter[4]++;

}
if(GEBE == 2)

{
counter[9]++;

if(RSM[kk][i-l+offset].r == RSM[kk][i-l+offset].r2)
counter[7]++;

else counter[8]++;

}

166



/'ii_!;_

}
else break;

}
} /* end loopj=Oton*/

} /* end loopi=OtoI*/
/* end if(GEN_STAT) */

if(DEBUG_DUMP)

{
printf("\nDecoded Word\n\n");

for(i=O; i<I; i++) prinffC%d\t",decoded_word[i]);

printf("\n");

for(i=0; i<n; i++)

(
printf("\n%d ",i);

for(j=0; j<I; j++)
{

if(RSM[i][j].r != RSM[i][j].r2)

printfC(%d, GE)\t",RSM[i] [j].reli);
else

printfC(%d, BE)\t",RSM[i] [j].reli);

if(PAUSE) getchar0;

}

if(DEBUG1)
{

printfC\nReceived word\n");

for(i=0; i<I; i++)
{

printfC\n");

for(j=0; j<n; j++)
{

printfC %d",RSM[j][i].r);

if(PAUSE) getchar0;

printf("_Correct word\n");

for(i=0; i<I; i++)

printfC\n");

for(j=O; j<n; j++)

{
printfC %d",RSM[j][i].r2);

}
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}

if(PAUSE) getcharO;

printf("\nReliability\n");

for(i=0; i<I; i++)

{
printfC\n");

for(j=0; j<n; j++)
{

printfC %d",RSM[j][i].reli);

}
}

if(PAUSE) getchar0;

printf("\nError flag\n");

for(i=0; i<I; i++)

{
printfC\n");

for(j=0; j<n; j++)
{

printfC %d",RSM[j] [i].flag);
}

}

if(PAUSE) getchar0;
} /* end if(DEBUG1) */

idl = 0;

id= 2;

/* Attempt the iteritive decoding */

for(j j=0; jj<max_iter; j j++)
{

/* Obtain the reliability info from the enibhoring codewords from */
/* the interleaver and/or SOVA */

ifOj==0) max_eras = 16;

else max_eras = max_eras 1;

if(id 1==id) break;

id = idl;

if(DEBUG)

{

printf("\ndecoded word = ");

for(i=O; i<I; i++) printf("%d ", decodedword[i]);
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if(id == I) break;

for(i=O; i<I; i++)

{

if(decoded_word[i] != 1) continue;

for(j=0; j<n; j++)
{

reli = RSM[j][i].reli;

if(reli >= 255) continue;

GEBE = RSM[j][.i].flag;

kk =j;
offset = O;

/* loop forward looking for identical reliabilities */

for(l=0; 1<I; l++)
{

if(i+l>=I && kk == n-1) break;

if(i+l>=I)

{
kk =j+l;
offset = I;

}
if(RSM[kk] [i+l-offset].reli --= tell)

{
if(decoded_word[i+l-offset] == 0)

RSM[kk][i+l-offset].flag = GEBE;
}
else break;

}

/* loop backwards looking for identical identities */

kk =j;
offset = O;

for(l=0; l<I; 1++)
{

if(i-I < 0 && kk == 0) break;

if(i-I < 0)

{
kk --j-l;

offset = I;

}
if(RSM[kk][i-l+offsetl.reli == reli)

{
if(decoded_word[i-l+offset] == O)

RSM[kkl[i-l+offset].flag = GEBE;
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elsebreak;
}

} /* end Ioopj=0ton*/

decoded_word[i] = 2; /* flag this word as already giving GEBE info */

}

/* Done revising reliability info */

/* Start prioritising the reliability info, and then begin decoding *!

for(ll = 0; ll<I; 11++) /* Find good erasures (GE) first */
{

GE_count = 0;

if(DEBUG)

printf("\ndecoded word = ");

for(i=0; i<I; i++) printf("%d ", decoded_word[i]);

if(decoded_word[ll] != 0) continue;

for(i=0; i<n; i++)
{

if(RSM[i][ll].flag == 1)
{

U[GE_count] = i;
GE_count ++;

}
}

if(GE count < max_eras)

{
r_count = 0;

for(i=0; i<n; i++)

{
if(GE_count + r_count < max_eras)

{
if(RSM[i][U].flag == 0)

{
U[GE_count + r_count] = i;

r_count++;

}
}

if(GE_count + r_count == max_eras)

{
for(j=GE_count; j<max_eras; j++)

{
for(l=GE_count; l<max_eras- 1; 1++)

{
if(RSM[U[1]][ll].reli > RSM[U[I+I]][ll].reli)

{
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temp=U[I];
U[II=U[I+I];
U[I+1]= temp;

}
}

}
r_count ++;

}

if(GE_count + r_count > max_eras)

{
if(RSM[U[max_eras-l]][ll].reli > RSM[i][ll].reli

&& RSM[i][ll].flag == 0)

{

U[max_eras- 1] = i;

for(j=max_eras- 1; j>=GE_count+ 1; j--)
{

if(RSM[U[j]][ll].reii < RSM[U[j-1]][ll].reli)

{
temp = U[j];

u[j] = u[j-l];
U[j- 1] = temp;

}
else break;

}
}

} /* End if(GE_count + rcount > max_eras) */

} /* End loop i=0.. n */

} /* End loop if(GE_count < max_eras) */

/* Now we have reliabilities try to decode */

if(DEBUG)

(
printf("\nMinimum reliabilities and positions\n");
for(i=O; i<max_eras; i++) printf("(%d, %d)",U[i], RSM[U[i]][ll].reli);

printfCW');

printf("knnumber of GE = %d", GE_count);
CC = 0;

for(i=0; i<n; i++)

{
if(RSM[i][ll].r != RSM[i][ll].r2)
{

cc += 1 ;

printf("\n%d error at %d Reliability = %d", cc, i, RSM[i][ll].reli);

for(j=O; j<max_eras; j++)
{

if(i == O[j]) printf(" min %d",j);
}

}
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if(PAUSE) getchar0;
/* end if(DEBUG) */

for(i=0; i<n; i++) r[i] = RSM[i][I1].r;

/* Begin decoding. Try with 0 erasures, and keep on adding 2 */

/* until decodes properly, or until maximum is reached */

/* The symbols with the minimum reliabilities are in positions */

/* U[0] ... U[num_erasures-l]. These symbols will be erased. */

/* Set these symbols equal to 0 before computing the syndrome */

decode_flag = I;

for(num_erasures=0; num_erasures <= max_eras; num_erasures +=2)

(

if(decode_flag)
{

counter[15] ++; /* Number of decoding trials */

for(i=0; i<num_erasures; i++) r[U[i]] = -1; /* =0 */

error = 0;

/* Compute the syndrome */
for(i= 1; i<= n-k; i++)

{
s[i] = 0;
for(j=0; j<n; j++)

if(r[j] !=-1)

S[i] ^= GF_table[ (r[j] + i'j) % n];

if (S[i] != 0) error = 1;/* If nonzero syndrome, there is an error*/
}
s[0] = 0;

/* Convert to GF representation */

for(i=l; i<=n-k; i++) S[i] = dec table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */

{
for(i=0; i < n; i++)

{
lambda[i] = 0;

B[i] = -1;

T[i] = 0;

}

lambda[0] = GF_table[0], /* =1 */

L=0;
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deg_lambda = O;
B[O] =0; /* = 1 */

for(rr=l; rr <= 2*t; rr++)

{
if (rr <= num erasures)

{
for (i= 1; i <= deg_lambda+ 1; i++)
{

if (lambda[i- 1] != 0)

tmp[i] = GF_table[(U[rr- l]+dec table[lambda[i- l]])%n];

else tmp[i] = 0;
}
for (j=l;j <=deg_lambda+l;j++) lambda[j] ^= tmp[j];
deg_lambda++;

for(j=0; j<= deg_lambda; j++) B[j] = dec_table[lambda[j]];
L ++;

}

else

{
/* Compute the discrepancy */
delta_r = O;

for(j=O; j<=rr; j++)

if(lambda[j] !=0 && S[rr-j] !=-l)

delta_r ^= GF_table[(dec_table[lambda[j]]+S[rr-j])%n];
delta_r = dec_table[delta_r];

if (delta_r != -1)

/* T(x) <--- lambda(x) + delta_r * x * B(x) */

for (j=l; j <= deg_lambda +1; j++)
if (B[i-1] !=-1)

T[j] = lambda[j] aGF_table[ (delta_r + B[j-1]) % n];

T[0] = lambda[0];

++deg_lambda;

if (2*L <= rr + num_erasures-1)

{
L = rr - L + num_erasures;

/* B(x)<--- B(x)/ delta_r */

for(j=0; j<= deg_lambda; j++)

if( lambda[j] != 0)

B[j] = (n-delta_r+dec_table[lambda[j]])%n;

else B[j] =-1;

/* lambda(x)< .... T(x) */

for(j=0; j<=deg_lambda+l; j++) lambda[j] = T[j];

}
else

{
/* lambda(x)< .... T(x) */
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for(j=0;j<n-k;j++) lambda[j]=T[j];

/* B(x) < ..... x* B(x) */

tmp[0] = - 1;

for(j=l; j<=n-k;j++) tmp[j] = B[j-1];
for(j=0; j<=n-k; j++) B[j] = tmp[j];

else

/* B(x) <..... x* B(x) */

tmp[0] = - 1;
for(j=l; j<=n-k; j++) tmp[j] = B[j- 1];

for(j=0;j<=n-k;j++) B[j] = tmp[j];

/* Change lambda(x) to GF representation */

for(i=0; i<n; i++) lambda[i] = dec_table[lambda[i]];

/* Compute the degree of lambda(x) */
deg_lambda = n;
for(i=n- 1; i>=0; i--)

if (lambda[i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the capacity of the code */

/* Comupte omega(X) = [!+S(X)] * lambda(X) */

for(i=0; i<=n-k; i++) omega[i] = 0;
for (i=0; i<=n-k; i++)

{
for (j=O; j<=n-k; j++)
{

if ((i+j) >= n-k+l) continue;

if (S[i] != -1 && lambda[j] != -1)

omega[i+j] ^= GF_table[ (S[i] + lambda[j]) % n ];
}

}

/* Convert omega(x) to GF representation */
for (i=0; i<=n-k; i++) omega[i] = dectable[omega[i]];

/* Find the roots of lambda(X). The inverses of the roots gives us the */
/* location of the errors. */

num_errors = 0;

for (i=0; i<q-1; i++)
{

sum = 0;

for (j=0; j<2*t; j++)
if (lambda[j] != - 1)
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sum̂ =GF_table[(lambda[j]+ i'j) %(q-l)];
if (sum==O)
{

beta[num_errors] = (n-i)%n;

num_errors++;
}

if((2*(num_errors-num_erasures) + num_erasures) <= 2*t)

if (num_errors == deg_lambda)
{

/* Correct Decoding. record the umber of erasures required */

erasure_counter[num_erasures] += l;

decode_flag = 0;

/* Convert r to base 10 representation */

for(i=0; i<n; i++)

if (r[i] != -1) r[i] = GF_table[r[i]];

else r[i] = O;

/* Calculate the error values and correct the received vector */

for (i=O; i<num_errors; i++)
{

/* Calculate the denominator */

den = O;

for (j=O; j<=2*t; j++)
(

if (j%2 == 0) continue;

if (lambda[j] != -1)
{

cl = GF_table[ ((q-l-beta[i])*(j-1) + lambda[j]) % n ];
den ^= c 1;

}
}

den = dec_table[den];

/* Calculate the numerator */

numer = 0;

for (j=O; j<=2*t; j++)

if (omega[j] !=- 1) numer ^= GF_table[ ((q- l-beta[i])*j + omega[j])%n ];

numer = dec_table[numer];

/* Correct the erroneous value */

if(numer != - 1)

r[beta[i]] ^= GF_table[(n+numer+beta[i]-den)%n];
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/* Change r back into the GF representation */

for(i=0; i<n; i++) r[i] = dec_table[r[i]];

} /* end if (num_errors == deg_lambda) */
else

{
decode_flag = 1;

} /* end if (num_erasures + num errors <= dmin) */
else

{
decode_flag = 1;

} /* end if (deg_lambda <= 2*t) */
else

{
decode_flag = 1;

}
} /* end if(error) */
else

{
erasure_counter[num_erasures] += 1;

decode_flag = 0;
}

} /* end if decode flag */

} /* end for num_erasures = 0 to maxeras */

if (!decode_flag)

{
/* Correct decoding. */

decoded_word[ll] = 1;
idl +=1;

for(i=0; i<n; i++)

{
if(RSM[i][ll].r != RSM[i][II].r2) RSM[i][ll].flag = 1;/* GE */

else RSM[i][ll].flag = 2;
}

if(DEBUG)

{
printf("\nWord %d decoded correctly", 11);
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if(PAUSE)getcharO;
}

failure = 0;

for(i=0; i<n; i++)

{
RSM[i][II].r = r[i];

if(RSM[i][ll].r != RSM[i][I1].r2) failure = 1;

if(failure) counter[ 10]++;

}
} /* Endll=0...I */

/* End jj = 0 .. max_iter */

ne = 0;

for(jj=0; jj<I; jj++) if(decoded_word[j j] !=0) ++ne;

++frame_failure[ne];

/* Send the result to the output */

for(jj=0; jj<I; j j++)
{

if(decoded_word[j j] == 0)
{

++counter[2]; /* Number of incorrect RSW */

ne = 0;

for(j=0; j<n; j++)

if(RSM[j][jj].r != RSM[j][jj].r2) ne++;

++error_stat2[ne- 16];
}

else ++counter[l]; /* Number of correct RSW */

for(j=0 ;j<k; j++)
{

if (RSM[n-k+j][jj].r == -l) sum = 0;

else sum = GF_table[RSM[n-k+j]W].r];

for (1=0; l<m; 1++)
[

cl = pow(2, m-l-l);
if (sum >= c 1)

{
data [ii*I*k*m + +jj*m*k +j*m + 1] = 1;

sum -= c 1 ;

}
else data [ii*I*k*m + +jj*m*k +j*m + 1] = 0;

}
}
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for(i=0;i<n*m;i++)
free(*RSM);

free(RSM);

free(beta);
free(r);
free(r2);
free(U);
free(S);
free(T);
free(B);
free(tmp);
free(lambda);
free(omega);
free(counter);

voidrs_decode_erasure_method_3(int*data,int*v2,int*counter,intn,intk,intq,
intm,intnum,int*erasure_counter,intI, int*decoded_word,
int*frame_failure,int*error_statl,int *error_stat2)

int GF_poly[11] = {0,0,0,6,12,20,48,72,184,272,576};
int i, ii, j, 1,11,t, rr,sum,sum2,L, cl, deg_lambda,delta_r;
int error,decode_flag,num_errors,numer,den,I flag;
intnum_erasures,temp,max_eras,maxeras1,cc,failure,ne;
int*r,*r2,*U,*S,*lambda,*omega,*B,*T,*tmp,*beta;
intjj, kk,reli,GEBE,offset,GE_count,r_count,maxiter,id,id1;
intredecode_flag,new_info_flag;
int*GF_table,*dec_table;

structmat**RSM;

GF_table= ivector(n+1);
dec_table=ivector(n+1);

t = (n-k)/2;

beta= ivector(n);
r = ivector(n);
r2=ivector(n);
U=ivector(2*t);
S=ivector(n);
T=ivector(n);
B=ivector(n);
tmp=ivector(n);
lambda=ivector(n);
omega=ivector(2*t+l);

max_erasl= 16;
max_iter=I;
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/* Create GF(2^m) field */

make GF table (m, GF_table, dec_table, GF_poty[m]);

for (ii = 0; ii < num/I; ii ++)

{

/* Enter the data into the matrix */

counter[13] ++; /* Total number of frames */

I_flag = 0;

for(i=0; i<I; i++)

{
id = 0;

decoded_word[i] = 0;

ne = 0;

counter[0]++; /* number of RSW */

for(j = 0; j < n; j++)

{
RSM[j][i].r = 0;

RSM[j][i].r2 = 0;

RSM[j][i].reli = 500;

RSM[i][i].flag = 0;
sum = 0;

sum2 = 0;

for (1 = 0; 1< m; 1++)

{
if( RSM[j][i].reli > abs(data[ii*I*n*m + i*n*m + j*m +1]))

RSM[j][i].reli = abs(data[ii*I*n*m + i*n*m + j*m +1]);

if(data[ii*I*n*m + i*n*m + j*m +1] <= 0)

data[ii*I*n*m + i*n*m +j*m +1] = 0;
else

data[ii*I*n*m + i*n*m +j*m +1] = 1;

sum += data[ii*I*n*m + i*n*m +j*m +l]*pow(2, m-l-l);

sum2 += v2[ii*I*n*m + i*n*m + j*m +l]*pow(2, m-1-1);
}
RSM[j][i].r = dec_table[sum];
RSM[j] [i].r2 = dec_table[sum2];

++counter[11]; /* Total number of bytes */

if(sum != sum2)

{
++ne;

counter[12] ++; /* Number of byte errors */
}

if(ne >trunc_length) ne = 32;
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if(ne<=16)ne= 16;
elseI_flag= 1;

++error_stat1[ne-16];
}

if(I_flag) counter[14] ++; /* Number of frame errors */

/* If GEN_STAT = 1, then the probability of flagging a BE given a GE */

/* and the probability of flagging a GE given a BE */

if(GEN_STAT)

{
for(i=0; i<I; i++)

{
for(j=0; j<n; j++)

{
reli = RSM_][i].reli;
if(reli >= 255) continue;

if(RSM[i][i].r == RSM[j][i].r2) GEBE = 2;
else GEBE = 1;

kk =j;
offset = 0;

/* loop forward looking for identical reliabilities */

for(l=0; 1<I; 1++)

{
if(i+l>=I && kk == n-l) break;
if(i+l>=I)

{
kk =j+l;
offset = I;

}
if(RSM[kk][i+l-offset].reli == reli)

{
if(GEBE == 1)

{
counter[6]++;

if(RSM[kk][i+l-offset].r == RSM[kk][i+l-offset].r2)
counter[5]++;

else counter[4]++;

}
if(GEBE == 2)

{
counter[9]++;

if(RSM[kk][i+l-offset].r == RSM[kk][i+l-offset].r2)

counter[7]++;

else counter[8]++;

}
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}
else break;

}

/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(l=0; l<I; 1++)

{
if(i-l < 0 && kk == 0) break;

if(i-I < 0)

(
kk =j-t;
offset = I;

}
if(RSM[kkl[i-l+offset].reli == reli)
{

if(GEBE == 1)

counter[6]++;

if(RSM[kkl[i-l+offset].r == RSM[kk][i-l+offsetl.r2)
counter[5]++;

else counter[4]++;

}
if(GEBE == 2)

{
counter[9]++;

if(RSM[kkl [i-l+offsetl.r == RSM[kk] [i-l+offset].r2)
counter[7]++;

else counter[8]++;

}
else break;

}
/* end loop j = 0 to n */

} /* end loopi=0toI*/
} /* end if(GEN_STAT) */

if(DEBUG_DUMP)

(
printfC\nDecoded Word\n\n");

for(i=O; i<I; i++) printfC%d\t",decoded_word[i]);

printfC\n");

for(i=0; i<n; i++)

{
printfC\n%d ",i);

for(j=0; j<I; j++)
{

if(RSM[i][i].r != RSM[i][j].r2)

printf("(%d, GE)\t",RSM[i][j].reli);
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else
printf("(%d,BE)\t",RSM[i][j].reli);

}
}

if(PAUSE) getchar0;

if(DEBUG1)

{

printfC\nReceived word\n");

for(i=0; i<I; i++)

{
printfC\n");
for(j=0; j<n; j++)

{
printfC %d",RSM[j][i].r);

}
}

if(PAUSE) getchar0;

printf("\nCon'ect word\n");

for(i=0; i<I; i++)

{
printfC\n");

for(j=0; j<n; j++)
{

printfC %d",RSM[i][i].r2);
}

}

if(PAUSE) getchar0;

printf("knReliability\n");

for(i=0; i<I; i++)
{

printf("_");

for(j=0; j<n; j++)

{
printf(" %d",RSM[j][i].reli);

}
}

if(PAUSE) getchar0;

printfC\nError flag\n");
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for(i=O; i<I; i++)

printfC\n");

for(j=0; j<n; j++)

{
printf(" %d",RSM[j][i].flag);

}
}

if(PAUSE) getchar0;

} /* end if (DEBUG 1) */

idl = 0;

id = 2;

/* Attempt the iteritive decoding */

for(j j=0; jj<max_iter; jj++)
{

/* Obtain the reliability info from the enibhoring codewords from */

/* the interleaver and/or SOVA */

if(jj==0) max_eras = 16;

else max_eras = max_eras 1;

if(id 1==id) break;

id=idl;

if(DEBUG)

{
printfC\ndecoded word = ");

for(i=0; i<I; i++) printf("%d ", decoded_word[i]);

}

if(id ==I) break;

if(j j==0) redecode_flag = 1;

else redecode_flag = 0;

for(i=I-1; i>=l; i--)

if(decoded_word[i] !=0 && decoded_word[i-1] == O)

redecode_flag = I;

if(!redecode_flag) break;

/* Start prioritising the reliability info, and then begin decoding */

for(ll = 0; 11<I;11++) /* Find good erasures (GE) first */
{

GE_count = 0;

if(DEBUG)

{
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printf("\ndecoded word = ");
for(i=O; i<I; i++) printf("%d ", decoded_word[i]);

if(decoded_word[ll] != 0) continue;

for(i=0; i<n; i++)

{
if(RSM[i][ll].flag == 1)

{
U[GE_count] = i;

GE_count ++;

}
}

if(GE_count < max_eras)
{

r_count = 0;

for(i=0; i<n; i++)

{
if(GE_count + rcount < max_eras)

{
if(RSM[i][il].flag == 0)
{

U[GE_count + r_count] = i;
r_count++;

}
}

if(GE_count + r_count == max_eras)

{
for(j=GE_count; j<max_eras; j++)

{
for(l=GE_count; l<max_eras- 1; 1++)

{
if(RSM[U[1]][ll].reli > RSM[U[I+I]][II].reli)

{

}
}

}

temp = U[I];
u[1] = U[l+l];
U[I+I] = temp;

r_count ++;

if(GE_count + r_count > max_eras)

{
if(RSM[U[max_eras-l]][ll].reli > RSM[i][ll].reli

&& RSM[i][ll].flag == 0)

{

U[max_eras-1] = i;
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for(j=max_eras-1;j>=GE_count+1;j--)
{

if(RSM[U[j]] [ll].reli < RSM[U[j- 1]][ll].reli)
{

temp = U[j];
uD] = u[j-l];
U[j- 1] = temp;

}
else break;

} /* End if(GE_count + r_count > max_eras) */

/* End loop i--0..n */
} /* End loop if(GE_count < max_eras) */

/* Now we have reliabilities try to decode */

if(DEBUG)

{
printfCNumber of trials = %d\n\nMinimum reliabilities and positions\n", counter[ 15]);
for(i=0; i<max_eras; i++) printf("(%d, %d)",U[i], RSM[U[i]][ll].reli);

printf("\n");

printf("\nnumber of GE = %d", GE_count);
cc = 0;

for(i=0; i<n; i++)

if(RSM[i][ll].r != RSM[i][ll].r2)

cc += 1 ;

printf("\n%d error at %d Reliability = %d", cc, i, RSM[i][ll].reli);
for(j=0; j<max_eras; j++)

if(i == U[j]) printfC min %d", j);

if (RSM[i][ll].flag == 1) printf(" GE");
}

}
if(PAUSE) getchar0;

} /* end if (DEBUG) */

for(i=0; i<n; i++) r[i] = RSM[i][I1].r;

decode_flag = 1;

if(GE_count >= max_erasl) max_eras = GE_count;
else max_eras = max_eras 1;

for(num_erasures=GE_count; num_erasures <= max_eras; num_erasures +=2)
{
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if(decode_flag)
{

counter[15] ++; /* Number of decoding trials */

for(i=0; i<num_erasures; i++) r[U[i]] = -1; /* =0 */

error = 0;

/* Compute the syndrome */

for(i=l; i<= n-k; i++)

{
s[i] = o;

for(j=0; j<n; j++)

if(r[i] !=-1)

S[i] ^= GF_table[ (r[j] + i'j) % n];
if (S[i] != 0) error = 1;/* If nonzero syndrome, there is an error*/

}
s[o] = o;

/* Convert to GF representation */

for(i=l; i<=n-k; i++) S[i] = dec table[S[i]];

if (error) /* If the syndrome is equal to zero, no decoding nessasary */
{

for(i=0; i < n; i++)

{
lambda[i] = 0;

B[i] = -1;

T[i] = 0;
}

lambda[0] = GF_table[0];
L=0;

deg_lambda = 0;
B[0] = 0; /* = 1 '*/

/* =1 */

for(rr= 1; rr <= 2*t; rr++)

(
if (rr <= num_erasures)

{
for (i=l; i <= deg tambda+l ; i++)
{

if (lambda[i-l] != 0)

tmp[i] = GF_table[(U[rr- 1]+dec_table[lambda[i- 1]])%n];
else tmp[i] = 0;

}

for (j=l; j <= deg_lambda+l; j++) lambda[j] ^= tmp[j];
deg_lambda++;

for(j=0; j<= deg_lambda; j++) B_] = dec_table[lambda[j]];
L ++;

}

else

{
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/* Compute the discrepancy */
delta r = 0;

for(j=0; j<=rr; j++)

if(lambda[j] != 0 && S[rr-j] != -1)

delta_r ^= GF_table[(dec_table[lambda[j]]+S[rr-j])%n];
delta_r = dec_table[delta_r];

if (delta_r != - 1)

{
/* T(x) <--- lambda(x) + delta_r * x * B(x) */

,i_I •

for (j=l; j <= deg_lambda +1; j++)

if (B[j-1] !=-I)

T[j] = lambda[j] ^GF_table[ (delta_r + B[j- 1]) % n];
T[0] = lambda[0];

++deg_lambda;

if (2*L <= rr + num_erasures-1)

{
L = rr - L + num_erasures;

/* B(x)<--- B(x)/ delta_r */

for(j=0; j<= deg lambda; j++)

if( lambda[j] != 0)

B[j] = (n-delta_r+dec_table[lambda[j]])%n;
else B[j] =-1;

/* lambda(x)< .... T(x) */

for(j=0; j<=deg_lambda+l; j++) lambda[j] = T[j];

}
else

{
/* lambda(x)< .... T(x) */

for(j=0; j<n-k;j++) lambda[j] = T[j];

/* B(x) < ..... x* B(x) */

trap[0] = - 1;

for(j=l;j<=n-k;j++) tmp_] = B[j-1];

for(j=O;j<=n-k;j++) B[i] = tmp[j];

else

{
/* B(x) < ..... x* B(x) */

tmp[0] = - 1 ;

for(j=l; j<=n-k; j++) tmp[j] = B[j-I];

for(j=0;j<=n-k:j++) B[j] =tmp[j];
}

/* Change lambda(x) to GF representation */

for(i=O; i<n; i++) lambda[i] = dec table[lambda[i]];
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/* Compute the degree of lambda(x) */
deg_lambda = n;

for(i=n- 1 ; i>=0; i--)

if (lambda[i] != -1 && deg_lambda == n) deg_lambda = i;

if (deg_lambda <= 2*t) /* Below the capacity of the code */

{

/* Comupte omega(X) = [I+S(X)] * lambda(X) */

for(i=0; i<=n-k; i++) omega[i] = 0;

for (i=0; i<=n-k; i++)

{
for (j=0; j<=n-k; j++)
{

if ((i+j) >= n-k+l) continue;

if (S[i] !=-1 && lambda[j] !=-1)

omega[i+j] ^= GF_table[ (S[i] + lambda[j]) % n ];
}

}

/* Convert omega(x) to GF representation */
for (i=0; i<=n-k; i++) omega[i] = dec_table[omega[i]];

/* Find the roots of tambda(X). The inverses of the roots gives us the */
/* location of the errors. */

num_errors = 0;

for (i=0; i<q-1; i++)
{

sum = 0;

for (j=0; j<2*t; j++)
if (lambda[j] != -1)

sum ^= GF_table[ (lambda[i] + i'j) % (q-l) ];
if (sum == 0)

{
beta[num_errors] = (n-i)%n;

num_errors++;

}

if((2*(num_errors-num_erasures) + hum_erasures) <= 2*t)

{
if (num_errors == deg_lambda)

{

/* Correct Decoding. record the umber of erasures required */

erasure_counter[num_erasures] += 1;

decode_flag = 0;

/* Convert r to base 10 representation */
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for(i=O;i<n;i++)

if(r[i] !-- -1) r[i] = GF_table[r[i]];

else r[i] = O;

/* Calculate the error values and correct the received vector */

for (i=O; i<num_errors; i++)

{
/* Calculate the denominator */

den = O;

for (j=0; j<=2*t; j++)
{

if (j%2 == 0) continue;

if (lambda[j] != -1)
{

cl = GF_table[ ((q-l-beta[i])*(j-1) + lambda[j]) % n ];
den ^= c 1;

}
}

den = dec_table[den];

/* Calculate the numerator */

numer = O;

for (j=O; j<=2*t; j++)

if (omega[j] != - 1) numer ^= GF_table[ ((q- 1-beta[i])*j + omega[j])%n ];

numer = dec_table[numer];

/* Correct the erroneous value */

if(numer != - I)

r[beta[i]] ^= GF_table[(n+numer+beta[i]-den)%n];

/* Change r back into the GF representation */

for(i=O; i<n; i++) r[i] = dec_table[r[i]];

} /* end if (num_errors == deg_lambda) */
else

{
decode_flag = 1;

}
} /* end if (num_erasures +num errors <= dmin) */
else

{
decode_flag = 1;

}
}
else

[

/* end if (deg_lambda <= 2*t) */
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decode_flag= 1;
}
} /* end if (error) *!
else

{
erasure_counter[num erasures] += I;

decode_flag = O;

}

} /* end if decode flag *!

} /* end for num_erasures = 0 to max_eras */

if (!decode_flag)
{

/* Correct decoding. */

decoded_word[ll] = 1;

idl +=l;

for(i=0; i<n; i++)
{

if(RSM[i][ll].r != RSM[i][II].r2) RSM[i][ll].flag = 1;/* GE */
else RSM[i][ll].flag = 2;

}

if(DEBUG)
{

printf("\nWord %d decoded correctly", 11);

if(PAUSE) getchar0;
}

failure = 0;

for(i=0; i<n; i++)

{
RSM[i][II].r = r[i];
if(RSM[i][ll].r != RSM[i][II].r2) failure = 1;

}

if(failure) counter[ 101++;

/* Begin updating the flags */

?

.i _"

for(j=0; j<n; j++)
[

reli = RSM[j][ll].reli;

if(reli >= 255) continue;

GEBE = RSM[j][ll].flag;
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kk=j;
offset= 0;

/* loop forward looking for identical reliabilities */

for(l=0; l<I; 1++)

{
if(ll+l>=I && kk == n-1) break;

if(ll+l>=I)

{
kk =j+l;
offset = I;

}
if(RSM[kk] [ll+l-offset].reli == reti)

{
if(decoded_word[tl+l-offset] =-- 0)

RSM[kk][ll+l-offset].flag = GEBE;

}
else break;

}

/* loop backwards looking for identical identities */

kk =j;
offset = 0;

for(l=0; 1<I; 1++)

{
if(ll-I < 0 && kk == 0) break;
if(ll-I < 0)

{
kk =j-l;
offset = I;

}
if(RSM[kkl[ll-l+offsetl.reli == reli)
{

if(decoded_word[ll-l+offset] == 0)

RSM[kk] [ll-l+offset].flag = GEBE;

}
else break;

}
} /* end loopj=0ton*/

decoded_word[i] = 2; /* flag this word as already giving GEBE info */

/* Done revising reliability info */

}
} /* Endll=0...I */

/* End jj = 0 .. max_iter */
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ne=0;
for(jj=0;jj<I; jj++)if(decoded_word[jj] !=0)++ne;

++frame_failure[ne];

/* Send the result to the output */

for(j j=0; jj<I; jj++)

{
if(decoded_word[j j] == 0)

{
++counter[2]; /* Number of incorrect RSW */
ne = 0;

for(j=0; j<n; j++)
if(RSM[j][jj].r != RSM[j][jj].r2) ne++;

++error_stat2 [ne- 16];
}

else ++counter[ I]; /* Number of correct RSW */

for(j=0 ; j<k; j++)
[

if (RSM[n-k+j]_jl.r == -1) sum = 0;

else sum = GF table[RSM[n-k+jl[jj].rl;
for (1=0; l<m; 1++)

{
cl = pow(2, m-l-l);
if (sum >= c 1)

{
data [ii*I*k*m + +jj*m*k +j*m + 11 = I;

sum -= c 1;

else data [ii*I*k*m + +jj*m*k +j*m + 1] = 0;
)

for(i=0;i<n*m;i++)

free(*RSM);

free(RSM);

free(beta);

free(r);

free(r2);

free(U);

free(S);

free(T);
free(B);

free(tmp);
free(lambda);

free(omega);
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B.8 Main program for real system using erasure Method I

# include <stdio.h>

# include <math.h>

# include <stdlib.h>
# include <stddef.h>

# include "mmt31 .h"

# define L_DEBUG 0
# define PAUSE 0

# define Nss 16 /* Number of samples per symbol */
# define Rb 1 /* The bit rate */

# define Tb (1.0/Rb)

# define Eb 1.0 /* The Energy per bit */

# define Pi 3.14159265359

/* Defining the random number generator constants */

# define IM1 2147483563

# define IM2 2147483399

# define AM (1.0/IM1)

# define IMM1 (IMI-1)
# define IA1 40014

# define IA2 40692

# define IQ1 53668
# define IQ2 52774
# define IR1 12211

# define IR2 3791
# define NTAB 32

# define NDIV (I+IMM1/NTAB)
# define EPS 1.2e-7

# define RNMX (1.0-EPS)

(

?

void main(int argc, char *argv[])
{

int *v, *u, i, ii, errors, M1, M2, Q;
long *idum;

long idum_cell;

long num samples, num_bits, N, N_total;

int rs_m, rs_t, rs_n, rs_k, rs_q, rs_num;

int conv_k, conv_n, conv_m, conv_num;
double *data, *Tx, *Rx, Pe;

double Psig, EbNo, gain;

int max_repeat, I, rows, I_num, a;

double *xl, *x2;
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FILE *inpf0,*inpfl, *inpf2,*inpf3,*outf0;

int **soft_metric,*erasure_counter,*rs_counter;
int num_erasures;
charcFilename[80];

idum---&idum_cell;

EbNo=atof(argv[1]);
N=atol(argv[2]);
I =atol(argv[31);
max_repeat--atol(argv[4]);

sprintf(cFilename,"NewRealM1

inpf0=fopen("m1.dat","r");
inpfl =fopen("m2.dat","r");
inpf2=fopen("tx.dat","r");
inpf3=fopen("rx.dat","r");

_ _erasure%2.2fEbNo_%dI_32delta_8soft.output",EbNo,I);

/* obtain the number of single sided filter */
/* coefficents for Tx (M1) and Rx (M2) */

fscanf( inpf0, "%d", &M 1);
fscanf(inpfl, "%d", &M2);

Tx = dvector(2*M1);
Rx = dvector(2*M2);

xl = dvector(2*Ml+l);

x2 = dvector(2*M2+l);

/* Read in the filter coefficients from data files */

for(i=0; i<2*M1; i++)

fscanf(inpf2, "%lf", &Tx[i]);

for(i=0; i<2"M2; i++)

fscanf(inpf3, "%lf", &Rx[i]);

/* The Reed Solomon coding parameters */

rs_m = 8;

rs_t = 16;

rs_q = pow(2, rs_m);

rs_n = rs_q- 1;
rs_k = rs_n - 2*rs_t;

/* Interleaving parameters */

rows = rs_m*rs_n;
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/* The Convolutional coding parameters */

conv_k = 1;

conv_n = 2;

conv_m = 6;

Q = 8i/* Number of soft decision levels */

rsnum = N/(rs k*rs_m);

if( N % (rs_k*rs_m) != O)

{
++rs_num;
N = rs_num*rs_k*rs_m;

}

I_num = rs_num/I;

if(rs_num%I != 0)

{
++ I_num;

rs_num = I_num*I;

N = rs_num*rs_k*rs_m;
}

gain = (double)(conv_k*rs_k)/(conv_n*rs n);

a = 10.0;

conv_num = (rs_num*rs_n*rs_m + 50)/conv_k;
num_bits = conv_n*(conv_num + 100);

num_samples = num_bits*Nss;
errors = O;

erasure_counter = ivector(2*rs_t);
rs_counter = ivector(rs_t);

soft_metric = int_matrix_2d(2, Q);

for(i=0; i<6; i++) rs_counter[i] = 0;

N_total = 0;

data = dvector(num_samples+3*M 1);

v = ivector(num_bits);
u = ivector(N);

*idum = -10;
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for(ii=0; ii<max_repeat; ii++)

for (i=0; i<num_bits; i++) v[i] = 0;

for (i=0; i<N; i++)

{
v[i] = bitgen(idum);
u[i] = vii];

}

rs_encode(v, rs_n, rs_k, rs_m, rs_num);

interleave(v, rows, rs_n, rs_m, I, I_num);

conv_encode(v, conv_n, conv_k, conv_m, conv_num);

modulate(data, v, num_bits);

filter(data, M1, Tx, xl, num_samples);

/* Adjust for delay introduced by filter */

for(i=0; i<num_samples; i++)
data[i] = data[i+M 1];

Psig = calc_power(data, num_samples);

add_noise(idum, data, num_samples, Psig, EbNo, gain);

filter(data, M2, Rx, x2, num_samples);

/* Adjust for delay introduced by filter */

for(i=0; i<num_samples; i++)
data[i] = data[i+M2];

demodsoft(data, v, num_bits, soft_metric, Q, a);

conv_decode(v, conv_n, conv_k, conv_m, conv_num, soft_metric, a);

deinterleave(v, rows, rs_n, rs_m, I, I_num);

rs_decode(v, rs_n, rs_k, rs_q, rs_m, rs_num, erasure_counter, rs_counter);

for (i=0; i<N; i++)

if (v[i] != u[i])

{
errors += l;

}
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N_total += N;

outf0=fopen(cFilename,"at+");
for (i=0; i<=rs_t; i+=2)fprintf(outf0,"%de= %d ",i, erasure_counter[i]);

fprintf(outf0,"\nnum = %d\n\nRS counter = ",rs_num);

for(i=0; i<6; i++) fprintf(outf0," %d",rs_counter[i]);

fprintf(outf0,"Xn\nl. S = 0. No Decoding\n2. deg_lambda > 2*t");

fprintf(outf0,"Xn3. 2*e + f > 2*tXn4. num_errors != deg_lambda");

fprintf(outf0,"\n5. Correct decoding\n5. Incorrect Decoding");

fprintf(outfO,"\nknEb/No = %2.2f dB",EbNo);

fprintf(outf0,"\n(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rs_t);

fprintf(outf0,"\ninterleaving depth I = %d",I);
fprimf(outfO,"\n(%d, %d, %d) convolutional code", conv_n, cony_k, conv_m);

fprintf(outf0,"\niteration number = %d\n# errors = %d\n N total = %ld", ii+ 1, errors, N_total);
Pe = (float)errors/N_total;

fprintf(outf0,"\nPe = %2. lOf_n\n",Pe);

fclose(outf0);

outf0=fopen(cFilename,"at+");

fpri ntf(outf0,"knerasure counter = ");

for (i=0; i<=rs_t; i+=2) fprintf(outf0,"%de= %d ",i, erasure_counter[i]);

fprintf(outf0,"\nnum = %d\nknRS counter = ",rs_num);

for(i=0; i<6, i++) fprintf(outf0," %d",rs_counter[i]);

fprintf(outf0,"\nXnl. S = 0. No Decoding\n2. deg_lambda > 2*t");

fprintf(outf0,"\n3. 2*e + f > 2*tkn4. num_errors != deg_lambda");

fprintf(outf0,"\n5. Correct decodinghaS. Incorrect Decoding");

fprintf(outf0,"_Eb/No = %2.2f dB",EbNo);

fprintf(outf0,"\nNumber of erasures = %d", num_erasures);

fprintf(outf0,"kn(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rst);

fprintf(outf0,"kninterleaving depth I = %d",I);

fprintf(outf0,"_(%d, %d, %d) convolutional code", conv_n, conv_k, conv_m);

fprintf(outfO,"\niteration number = %d\n# errors = %dXn N total = %ld", ii+l, errors, Ntotal);
Pe = (float)errors/N_total;

fprintf(outf0,"\nPe = %2.10f_nXn",Pe);

fclose(outf0);

fclose(inpfl);

fclose(inpf2);
fclose(inpf3);

free(xl);
free(x2);

free(data);
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free(v);
free(u);
free(Rx);
free(Tx);
free2d int matrix(2,soft_metric);

B.10 Main program for ideal system using erasure Method 2

# include <stdio.h>
# include <math.h>

# include <stdlib.h>
# include <stddef.h>

# include "mmt33.h"

# define FILE_PRINT 1 /* Prints either to file(l) or screen(0) */

/* Note: All DEBUG flags must be 0 */

# define GEN_STAT I

# define PAUSE 0 /* uses getchar0; to pause the output displayed to the screen */
# define L_DEBUG 0 /* prints out reliability values in SOVA */
# define DEBUG 0
# define DEBUG1 0

# define DEBUG_DUMP 0 /* Shows the whole deinterleaving frame with reliability values */

# define Nss 16 /* Number of samples per symbol */
# define Rb 1 /* The bit rate */

# define Tb (1.0/Rb)

# define Eb 1.0 /* The Energy per bit */

struct mat

{
int r;

int r2;

int reli;

int flag;
};

/* Defining the random number generator constants */

# define lM1 2147483563

# define lM2 2147483399

# define AM(1.0/IMI)

# define IMM 1 (IM 1-1)
# define IA1 40014

# define IA2 40692

# define IQ1 53668
# define IQ2 52774
# define IR1 12211

# define IR2 3791

# define NTAB 32
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# define NDIV (1 +IMM 1/NTAB)
# define EPS 1.2e-7

# define RNMX (1.0-EPS)

int main(int argc, char *argv[])
{

int *v, *v2, *u, i, ii, j, errors, Q;

long *idum;

long idum cell;

long num_bits, N, N_total;

int rs_m, rs_t, rs_n, rs_k, rs_q, rs_num;
int conv_k, conv_n, conv_m, conv_num;

double Pe, x, var, sd, A, amp, b, a;

double EbNo, gain, *prob;
int max_repeat, I, rows, I_num, level, frame_error;

FILE *outf0;

int **soft_metric;

int *erasurecounter, *counter, *decoded_word;

int *frame_failure, *error_statl, *error_stat2, **num_bits_per_level;

char cFilename[80];

idum=&idum_cell;

EbNo=atof(argv [ 1]);

N = atol(argv[2]);
I = atol(argv[3]);

max_repeat = atol(argv[4]);

if(FILE_PRINT) sprintf(cFilename,"B_Method2_%2.3fEbNo%dI.output",EbNo,I);

/* The Reed Solomon coding parameters */

rs_m = 8;

rs_t = 16;

rs_q = pow(2, rs_m);

rs_n = rs_q- 1;
rs_k = rs_n - 2*rs_t;

/* Interleaving parameters */

rows = rs_m*rs_n;

/* The Convolutional coding parameters */

conv_k = 1;

conv_n = 2;

conv_m = 6;

Q = 256; /* Number of soft decision levels */
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rs_num=N/(rs_k*rs_m);

if(N%(rs_k*rs_m)!=0)
{

++rs_num;

N = rs num*rs_k*rs_m;

I_num = rs_num/I;

if(rs_num%I != 0)

{
++ I_num;

rs_num = I_num*I;

N = rs_num*rs_k*rs_m;

}

gain = (double)(conv_k*rs_k)/(conv_n*rs_n);

a = 10.0;

conv_num = (rs_num*rs_n*rs_m +50)/conv k;

num_bits = conv_n*(conv_num + 100);
errors = O;

soft_metric = int_matrix_2d(2, Q);

num_bits_per_level = int_matrix_2d(2, Q);
counter = ivector(7);

prob = dvector(Q);

/* stuff from RS encode */

frame_failure = ivector(I+ 1);

error_statl = ivector(32); /* Keeps track of how many RSW contain x number of errors */
error_stat2 = ivector(32);

decoded_word = ivector(I);

for(i=0; i<7; i++) counter[i] = 0;

amp = 1.0;

N_total = 0;

v = ivector(num_bits);

u = ivector(N);

v2 = ivector(num_bits);

*idum = -10; /* Random number initial seed */

A = gain*pow(10.0, (EbNo/10.0));
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var= 1.0/(2*A);

sd= sqrt(var);

for(ii=0;ii<max_repeat;ii++)
{

for (i=0; i<num_bits; i++) vii] = 0;

for (i--0; i<N; i++)

{
v[i] = bitgen(idum);

u[i] = v[i];
}

rs_encode(v, rs_n, rs_k, rs_m, rs_num);

for(i=0; i<num_bits; i++) v2[i] = v[i];

interleave(v, rows, rs_n, rs_m, I, I_num);

conv_encode(v, conv_n, conv_k, conv_m, conv_num);

for (i=0; i<num_bits; i++)

{
if(v[i] == 1) x = 1.0 + sd*gasdev2(idum);

else x = - 1.0 + sd*gasdev2(idum);

/* Demod */

for(j=0; j<Q; j++)

if(x>=amp*(2*j-Q)/Q && x< amp*(2*(j+ 1)-Q)/Q)

level = j;

if(x >= amp) level = Q- 1;

if(x <= -amp) level = O;

num_bits_per_level[v[i]][level] += 1;

v[i] = level;
}

for(i=O; i<Q; i++)

prob[i] = (double)(num_bits_per_level[O] [i] + num_bits_per_level[ 1][Q-i- 1] + 1)/(2*num_bits +Q);

b = -log(prob[Q- 1])/log(2.0);

for(i=O; i<Q; i++)

{

soft_metric[O][i] = (int)(floor)(a*(log(prob[i])/log(2.0) + b));
soft_metric[ 1][Q-i- 1] = soft_metric[O][i];

}

conv_decode(v, conv_n, conv_k, conv_m, conv_num, soft_metric, a);
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deinterleave(v, rows, rs_n, rsfm, I, I_num);

rs_decode_erasure_method_2(v, v2, counter, rs_n, rs_k, rs_q, rs_m, rs_num,
erasure_counter, I, decoded_word, frame_failure, error_statl, error_stat2);

for (i=0; i<N; i++)

if (v[i] != u[i])

errors += 1 ;

N_total += N;

if(!FILE_PRINT)
{

printf("\n\n");
printf("Erasure Counter\n");

for (i=0; i<=2*rs_t-4; i+=2) printf("%de= %d ",i, erasure_counter[i]);

printf("\n\nError Counter 1 (number of times x amount of errors occoured)\n");

for(i=0; i<16; i++)

{
if(i==7) printf("\n");

printf("%derr = %d ", 16+i, error_statl [i]);

}

printf("\n\nError Counter 2 (# of errors for non-decoded word)\n");

for(i=0; i<16; i++)

{
if(i==7) printf("\n");

printf("%derr = %d ", 16+i, error_stat2[i]);
}

printf("\n\nFrame decoded with x correct\n");

for(i=0; i<=I; i++) printf("%dcct = %d ",i, frame_failure[i]);

if(GEN_STAT)

{
printf("_\nNumber of GE flagged GE = %d Prob = % 1.3f_n", counter[4],

(float)counter[4]/counter[6]);

printf("Number of GE flagged BE = %d Prob = % 1.3f_n",

counter[5],(float)counter[5]/counter[6]);

printf("Total number of GE declaired = %d\n",counter[6]);

printf("\nNumber of BE flagged BE = %d Prob = % 1.3f_n", counter[7],
(float)counter[7]/counter[9]);

printf("Number of BE flagged GE = %d Prob = % 1.3f_n", counter[8],
(float)counter[8]/counter[9]);

printf("Total number of BE declaired = %d\n",counter[9]);
}

printf("\n\nBefore Decoding, no erasures used:\n");
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printf("\nTotal number of bytes = %d", counter[l 1]);

printfC\nNumber of byte errors = %d", counter[12]);

printf("\nProb of byte error = %2.51f",(double)counter [ 12]/counter[ 1 t]);

printf("\n\nTotal number of frames = %d", counter[13]);

printfC\nNumber of frames in error = %d", counter[ 14]);

printfC\nProb of frame error = %2.51f", (double)counter[ 14]/counter[13]);

printfc\n\nNumber of RSW = %d",counter[0]);

printfC\nNumber of RSW correct = %d",error_statl [0]);
printf("\nNumber of RSW incorrect = %d", counter[0]-error_stat 1 [0]);

printfC\nProb of RSW incorrect = %2.5 If" ,(double)(counter[0]-error_stat 1 [0] )/counter[0] );

printfC\n\nAfter decoding:\n");

frame_error = O;

for(i=O; i<I; i++) frame_error += frame failure[i];

printf("\nTotal number of frames = %d", counter[ 13]);

printf("\nNumber of frames in error = %d", frame_error);

printf("\nProb of frame error = %2.51f",(double)frame_error/counter[ 13]);

printf("\n\nNumber of RSW = %d",counter[0]);
printf("\nNumber of RSW correct = %d",counter[ 1]);

printf("\nNumber of RSW incorrect = %d", counter[2]);

printfC\nProb of RSW incorrect = %2.51f",(double)counter[2]/counter[0]);

printf("\n\nTotal number of decoding trials = %d",counter[ 15]);

printf("\nAverage number of decoding trials = %3.31f", (double)counter[ 15]/counter[0]);

printfC\nNumber of decoding failures = %d\n",counter[10]);

printf("\n\nEb/No = %2.2f dB",EbNo);

printf("\n(%d, %d, %d) Reed Solomon Code",rs_n, rs_k, rs_t);
printf("\ninterleaving depth I = %d",I);

printf("ha(%d, %d, %d) convolutional code", conv_n, conv_k, conv_m);

printf("_niteration number = %d\n# errors = %d\n N total = %ld", ii+ 1, errors, N_total);
Pe = (float)errors/N_total;

printf("haPe = %2.1015n\n",Pe);

if(FILE_PRINT)
{

outf0=fopen(cFilename,"at+");

fprintf(outf0,"\n\nErasure Counter\n");

for (i=0; i<=2*rs_t-2; i+=2) fprintf(outf0,"%de= %d ",i, erasure_counter[i]);

fprintf(outf0,"\n\nError Counter 1 (number of times x amount of errors occoured)\n");
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for(i=0;i<16;i++)fprintf(outf0,"%derr= %d", 16+i,error_statl[i]);

for(i=0;i<16;i++)
{

if(i==7) fprintf(outf0,"\n");

fprintf(outf0,"%derr = %d ", 16+i, error_statl[i]);
}

fprintf(outf0,"\n\nError Counter 2 (# of errors for non-decoded word)in");

for(i=0; i<16; i++)

{
if(i==7) fprintf(outf0,"\n");

fprintf(outf0,"%derr = %d ", 16+i, error_stat2[i]);
}

fprintf(outf0,"\n\nFrame decoded with x correct\n");

for(i=0; i<=I; i++) fprintf(outf0,"%dcct = %d ",i, frame failure[i]);

if(GEN_STAT)

[
fprintf(outf0,"\n\nNumber of GE flagged GE = %d Prob = % 1.315n", counter[4],

(float)counter[4]/counter[6]);

fprintf(outf0,"Number of GE flagged BE = %d Prob = % 1.315n",
counter[5],(float)counter[5]/counter[6]);

fprintf(outf0,"Total number of GE declaired = %d\n",counter[6]);

fprintf(outf0,"\nNumber of BE flagged BE = %d Prob = % 1.3f_n", counter[7],
(float)counter[7]/counter[9]);

fprintf(outf0,"Number of BE flagged GE = %d Prob = % 1.3f_n", counter[8],
(float)counter[8]/counter[9]);

fprintf(outf0,"Total number of GE declaired = %d\n",counter[9]);
}

fprintf(outf0,"\n_Before Decoding, no erasures used:\n");

fprintf(outf0,"\nTotal number of bytes = %d", counter[11]);

fprintf(outf0,"_Number of byte errors = %d", counter[ 12]);

fprintf(outf0,"\nProb of byte error = %2.51f',(double)counter[ 12]/counter[ 11]);

fprintf(outf0,"\n\nTotal number of frames = %d", counter[ 13]);

fprintf(outf0,"\nNumber of frames in error = %d", counter[ 14]);

fprintf(outf0,"\nProb of frame error = %2.51f", (double)counter[ 14]/counter[ 13]);

fprintf(outf0,"\n\nNumber of RSW = %d",counter[0]);

fprintf(outf0,"\nNumber of RSW correct = %d",error_statl [0]);

fprintf(outf0,"\nNumber of RSW incorrect = %d", counter[0]-error_stat 1[0]);

fprintf(outf0,"\nProb of RSW incorrect = %2.51f",(double)(counter[0]-error_statl [0])/counter[0]);

fprintf(outf0,"\n\nAfter decoding :in");

frame_error = 0;
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for(i=0;i<I;i++)frame_error+=frame_failure[i];

fprintf(outf0,"\nTotalnumberofframes=%d",counter[13]);
fprintf(outf0,"\nNumberofframesinerror=%d",frame_error);
fprintf(outf0,"\nProbofframeerror=%2.51f",(double)frame_error/counter[l3]);

fprintf(outf0,"\n\nNumberofRSW=%d",counter[0]);
fprintf(outf0,"\nNumberofRSWcorrect= %d",counter[1]);
fprintf(outf0,"\nNumberofRSWincorrect= %d",counter[2]);
fprintf(outf0,"\nProbof RSWincorrect= %2.51f",(double)counter[2]/counter[0]);

fprintf(outf0,"\n\nTotalnumberofdecodingtrials= %d",counter[15]);
fprintf(outf0,"\nAveragenumberofdecodingtrials= %3.31f",(double)counter[15]/counter[0]);

fprintf(ouff0,"\nNumberofdecodingfailures= %d\n",counter[10]);

fprintf(outf0,"\n\nEb/No= %2.2fdB",EbNo);
fprintf(outf0,"\n(%d,%d,%d)ReedSolomonCode",rs_n,rs_k,rs_t);
fprintf(outf0,"\ninterleavingdepthI =%d",I);
fprintf(outf0,"\n(%d,%d,%d)convolutionalcode",conv_n,conv_k,conv_m);
fprintf(outf0,"\niterationnumber=%d\n#errors= %d\nNtotal=%ld",ii+l, errors,N_total);
Pe= (float)errors/N_total;
fprintf(outf0,"\nPe= %2.10f_n\n",Pe);

fclose(outf0);
}

free(v);

free(u);

free(v2);

free 2d int matrix(2, soft_metric);

free 2d int matrix(2, num_bits_per_level);
free(decoded_word);

free(frame_failure);

free(error_stat 1);
free(error stat2);
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